Welcome

Thank you for choosing Freenove products!

Get Support & Offer Input

You may find somethings missing or broken, or some difficulty to learn the kit. Freenove provides free and quick support, including but not limited to:

- Quality problems of products
- Problems in using products
- Questions for learning and technology
- Opinions and suggestions
- Ideas and thoughts

If you have any concerns, please send email to us:

support@freenove.com

And suggestions and feedbacks are welcomed. Many customers offered great feedbacks. According to that, we are keeping updating the kit and the tutorial to make it better. Thank you.

Safety

Pay attention to safety when using and storing this product:

- Do not expose children under 6 years of age to this product. Put it out of their reach.
- Children lack safety ability should use this product under the guardianship of adults.
- This product contains small and sharp parts. Do not swallow, prick and scratch to avoid injury.
- This product contains conductive parts. Do not hold them to touch power supply and other circuits.
- Some parts will rotate or move when it works. Do not touch them to avoid being bruised or scratched.
- The wrong operation may cause overheat. Do not touch and disconnect the power supply immediately.
- Operate in accordance with the requirements of the tutorial. Otherwise, the parts may be damaged.
- Store the product in a dry place and avoid direct sunlight.
- Turn off the power of the circuit before leaving.

About

Freenove provides open source electronic products and services.

Freenove is committed to helping customers learn programming and electronic knowledge, quickly realize their creative ideas and product prototypes and launching innovative products. Our services include:

- Kits of robots, smart cars and drones
- Kits for learning Arduino, Raspberry Pi and micro:bit
- Electronic components and modules, tools
- Product customization service

You can learn more about us or get our latest information through our website:

http://www.freenove.com

Copyright

All the files we provided are released under <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0</u> <u>Unported License</u>. You can find a copy of the license in the folder.

This means you can use them on your own derived works, in part or completely. But NOT for the purpose of commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. Cannot be used without formal permission.

Contents

Welcome	I
Contents	I
Preface	1
Micro:bit	2
Meet micro:bit Features Hardware	2
Micro:bit GPIO Extension Board	
Hardware and Feature How to use?	
Code & Programming	8
Quick Start MakeCode Quick Download Import Code Python	
Chapter 1 LED matrix	
Project 1.1 Heartbeat Project 1.2 Displaying Number Project 1.3 Displaying Text Project 1.4 Displaying Custom	23 29
Chapter 2 Built-in Button	
Project 2.1 Button A and B	
Chapter 3 LED	
Project 3.1 Blink	42
Chapter 4 Button and LED	
Project 4.2 Table Lamp	58
Chapter 5 LED Bar Graph	63
Project 5.1 Flowing Light	63

support@freenove.com

Chapter 6 PWM	70
Project 6.1 Breathing Light	70
Chapter 7 RGBLED	
Project 7.1 Monochromatic Light	
Project 7.2 Multicolored Light	84
Chapter 8 Neopixel	
Project 8.1 Rainbow Water Light	
Chapter 9 Buzzer	
Component knowledge	
Project 9.1 Active Buzzer	
Project 9.2 Happy Birthday Melody	
Chapter 10 Carial Campunization	117
Project 10.1 Display the Data	······ 上上 / 117
Chapter 11 N/accestor	100
Chapter 11 Magnetometer	
Project 11.1 Display Magnetometer Data Project 11.2 Electronic Compass	
Chapter 12 Accelerometer	136
Broject 12.1 Display Accelerometer Data	126
Project 12.2 Gradiometer	
Chapter 13 Potentiometer	146
Project 13.1 Potentiometer	
Chapter 14 Potentiometer and LED	
Project 14.1 Soft Light	
Project 14.2 Multicolored Soft Light	
Project 14.3 Rainbow Light	
Chapter 15 Light Sensor	
Project 15.1 Built-in Light Sensor	
Project 15.2 Night Light	
Chapter 16 Temperature Sensor	
Project 16.1 Built-in Temperature Sensor	
Project 16.2 Inermistor	

Chapter 17 Joystick	193
Project 17.1 Displaying Joystick Data	
Chapter 18 74HC595 and LED Bar Graph	206
Chapter 19 74HC595 and 7-segment display Project 19.1 7-segment display	
Chapter 20 LCD1602	
Chapter 21 Motor Project 21.1 Relay & Motor Project 21.2 Potentiometer & Motor	235
Chapter 22 Servo Project 22.1 Sweep Project 22.2 Knob	251
Chapter 23 Stepper Motor	
Chapter 24 Hygrothermograph	270
Chapter 25 Matrix Keypad Project 25.1 Matrix Keypad Project 25.2 Countdown Timer	281
Chapter 26 Infrared Motion Sensor	
Chapter 27 Ultrasonic Ranging	
What's Next?	316

Preface

Do you want to learn programming?

Nowadays, Program is developed into the younger age group, and everyone programming is a trend. From Arduino and Raspberry Pi to micro:bit, simple graphical programming makes programming for kids possible. Maybe you haven't heard of them, it doesn't matter. With this product and the tutorial, you can easily complete a programming project and experience the fun as a Maker.

Micro:bit is a powerful and simple development board. Even if you've never programmed before, its simple graphical programming interface allows you to master it easily. It doesn't require any professional programming software; just simply a browser is enough to program it. So, no matter your computer system is Windows, Linux or Mac, you can program it. And you can also program it with Python.

It attracts a lot of fans in the world who are keen to exploration, innovation and DIY and have contributed a great number of high-quality open-source code, circuit and rich knowledge base. So we can realize our own creativity more efficiently by using these free resource. Of course, you can also contribute your own strength to the resource.

With Micro:bit, we can make a lot of projects and by adding kits to breadboard, we can carry out more interesting projects like ultrasonic ranging, gravity control, playing music, etc.

In each learning chapter of this tutorial, we provide program source code with detailed program explanations and burnable binaries, so that you can understand the meaning of each section of program.

Additionally, if you have any difficulties or questions about this tutorial and the kit, you can always ask us for quick and free technical support.

Micro:bit

This chapter is the Start Point in the journey to build and explore Micro:bit and Micro:Rover electronic projects.

Meet micro:bit

The BBC micro:bit is a pocket-size, programmable micro-computer that can be used for all sorts of cool creations, from robots to musical instruments – the possibilities are infinite.

For more contents, please refer to: https://microbit.org/guide/

Features

Your micro:bit has the following physical features:

- 25 individual programmable LEDs
- 2 programmable buttons
- Physical connection pins
- Light and temperature sensors
- Motion sensors (accelerometer and compass)
- Wireless Communication, via Radio and Bluetooth
- USB interface

For more details, please refer to: https://microbit.org/guide/features/

Hardware

It is not required for beginners to master this section, but a brief understanding is necessary. However, if you want to be a developer, hardware information will be very helpful. Detailed hardware information about micro:bit can be found here: <u>https://tech.microbit.org/hardware/</u>. First, get to know the micro:bit GPIO.

GPIO

GPIO, namely General Purpose Input/output Pins, is an important part of micro:bit for connecting external devices. All sensors and devices on Rover communicate with each other through micro:bit GPIO. The following is the GPIO serial number and function diagram of micro:bit:

Micro:bit GPIO Extension Board

Hardware and Feature

Micro:bit GPIO Extension Board is shown as below:

Micro:bit GPIO Extension Board is connected to micro:bit board via a slot with its GPIO connected to micro:bit's GPIO. In addition, there are also 5V and VIN(9V) IO port on the extension board to meet requirement of more devices.

How to use?

If external device doesn't require voltage of 5V and 9V, you can use the following wiring.

If external device uses 5v voltage, but power needed is not large, you can use the following wiring.

If external device uses 5v voltage, but power needed is large, you can use the following wiring.

Code & Programming

Quick Start

This section describes how to write programs for micro:bit and how to download them to micro:bit. There are very detailed tutorials on the official website. You can refer to: <u>Https://microbit.org/guide/quick/</u>.

Step 1: Connecting Micro:bit

Connect the micro:bit to your computer via a micro USB cable. Macs, PCs, Chromebooks and Linux systems (including Raspberry Pi) are all supported.

Step 2: Write Program

Visit <u>https://makecode.microbit.org/</u>. Then click "New Project" and start programming.

If your computer has Windows 10 operating system, you can also use Windows 10 App for programming, which is exactly the same as programming on browsers. Get windows 10 App(Click).

My Projects

Write your first micro:bit code. For example, drag and drop some blocks and try your program on the Simulator in the MakeCode Editor, like in the image below that shows how to program a Flashing Heart.

Here is a demo video: <u>https://microbit.org/images/quickstart/makecode-</u> heart.mp4

MakeCode will be further introduced in next section.

Step 3: Flashing Code to your Micro:bit

The process of transferring the .HEX file to the BBC micro:bit is called flashing.

If you write program using Windows 10 App, you just need to click the "Download" button, then the program will be downloaded directly to micro:bit without any other actions.

If you write program using browser, please follow steps below:

Click the Download button in the editor. This will download a 'hex' file, which is a compact format of your program that your micro:bit can read. Once the hex file has been downloaded, copy it to your micro:bit just like copying a file to a USB drive. On Windows you can right click and choose "Send to→MICROBIT."

Step 4: Run the Program

The micro:bit will pause and the yellow LED on the back of the micro:bit will blink while your code is flashed. Once that's finished the code will run automatically! The micro:bit can only run one program at a time - every time you drag-and-drop a hex file onto the device over USB it will erase the current program and replace it with the new one.

Warning

The MICROBIT drive will automatically eject and reconnect each time you program it, but your hex file will be gone. The micro:bit can only receive hex files and won't store anything else!

MakeCode

Open web version of <u>MakeCode</u> or **windows 10 app version of MakeCode**, which can be downloaded on **Microsoft store.**

https://makecode.microbit.org/ ⊡micro:bit 삼 Home Microsoft ± Import My Projects Tutorials Micro Chat Flashing Heart Name Tac Smilev Buttons Dice Love Mete

Click "New Project", MakeCode editor is as below:

🖸 micro:bit 🖀 Home < Share	Blocks {} JavaScript	🤨 🌣 💾 Microsoft
	Search Q Basic Input Music	Settings
	Graphic code and text code switch	Code editing area
Simulatorlator	✓ Logic ✓ Variables ✓ Math ✓ Code library ✓ Rover	
	Advanced	
Code Download Button	f _₩ Functions Arrays T Text	
🛛 📥 Download	MyCode Project name	

In the code area, there are two fixed blocks "on start" and "forever".

The code in the "on start" block will be executed only once after power-on or reset. And the code in "forever" block will be executed circularly.

Quick Download

As mentioned earlier, if you use **Windows 10 App of MakeCode (recommended)**, you can **quickly** download the code to micro:bit by **clicking the download button**. Using **browser version of MakeCode** may require **more steps**.

If you use browser version of MakeCode on **Google Chrome 65+ for platform Android, Chrome OS, Linux, macOS and Windows 10**, you can also download file quickly.

Here we use webUSB feature of Chrome, which allows web pages to access your USB hardware devices. We will complete the connection and pairing of the micro:bit device with the webpage in the following steps.

Pair device

Blocks { } JavaScript 8 ÷ Microsoft Search... Q Project Settings on start forever Basic Extensions show icon Input Delete Project Ŵ show icon Music Report Abuse... 0 C Led S Language ... Radio High Contrast On C Loops Reset 🔀 Logic Variables 📰 Math About... Advanced

Connect your computer and Micro:bit with a USB cable. Click the gear menu in the top right corner and then click on "Pair device".

Then continue to click "Pair device" button.

Pair device for one-cli	8	
First time here? You must have version 0249 or above of the firmware		
Check your firmware version here and update if needed	Connect the micro:bit to your computer with a USB cable Use the microUSB port on the top of the micro:bit	2 Pair your micro:bit Click 'Pair device' below and select BBC micro:bit CMSIS-DAP or DAPLink CMSIS-DAP from the list
	Help	? Pair device 🚓

Select device on the pop-up window and click "Connect" button. If there are no devices shown on the popup window, please refer to following content:

https://makecode.microbit.org/device/usb/webusb/troubleshoot

We have save the page as a file **"Troubleshooting downloads with WebUSB - Microsoft MakeCode.pdf**". You can read it directly in the folder of this tutorial.

And the file "**Firmware microbit.pdf**" introduces how to update firmware of micro:bit. Its content come from: https://microbit.org/guide/firmware/

Microsoft Ma	keCode for micro:bi × +			
\leftrightarrow \rightarrow G	https://makecode.microbit.org/#editor			
	makecode.microbit.org wants to connect		Blocks	{} Jav
• • • • • • • • • • • • • • • • • • •	BBC micro:bit CMSIS-DAP	Q.	on st	
	.	S		

After the connection succeeds, click the Download button and the program will be downloaded directly to Micro: bit.

Import Code

We provide hex file (project files) for each project, which contains all the contents of the project and can be imported directly. You can also complete the code of project manually. If you choose to complete the code by dragging code block, you may need to add necessary extensions.

As for simple projects, it is recommended to complete the project by dragging code block.

As for complicated projects, it is recommended to complete the project by importing Hex code file.

Next, we will take "Heartbeat" project as an example to introduce how to load code.

Open web version of makecode or windows 10 app version of MakeCode.

Click "Import" button on the right of HOME page.

In the pop-up dialog box, click "Import File".

Select file".. Projects/BlockCode/01.1_Heartbeat/Heartbeat.hex". Then click "Go ahead!"

Open .hex file

Select file	Heartbeat.h	ex				
			Go ahead!	~	Cancel	,

		Block	S		} Jav	aScri	ipt				?	ŝ			Mic	rosofi	2
	Search Q	on s	tart			f	orever			-				(h)	14		
\bigcirc	Basic		F	_		1	show	icon		-	-						
	O Input			-		. 1	~		1000		-						
	O Music						Snow	ICON	10.01								
	C Led						x	×.									
0 1 2 3V GND	I Radio																1
I C W 40 K	C Loops																
	X Logic																
	Variables																
	Math																
	✓ Advanced																
																_	1
🔹 📥 Download	Heartbeat		8										'n	٩	€	•	

Python

If you are not interested in python, you can skip this section.

Micro:bit can be programmed in Python. Since micro:bit is a microcontroller, the hardware difference makes it not support pure Python. Here we use MicroPython, which is specially designed for micro:bit.

MicroPython is a lean and efficient implementation of the Python 3 programming language that includes a small subset of the Python standard library and is optimized to run on microcontrollers and in constrained environments.

We designed block code and Python code with similar function for each project.

There are two kinds of python editors for micro:bit, web version and software.

It is highly recommended to use software Mu as a Python educator.

Mu. (https://codewith.mu/en/download)

Next, we will introduce Mu.

Mu

Mu is a Python code editor for beginner programmers based on extensive feedback given by teachers and learners.

Official website: https://codewith.mu/

You can download it here: https://codewith.mu/en/download

Download and install it.

And you will see the following interface when opening it.

Click the Mode button in the menu bar and select "BBC micro:bit" in the pop-up dialog box. Click "OK".

Select Mode	?	×
Please select the desired mode then click "OK". Otherwise, click "Cancel".		
Adafruit CircuitPython Use CircuitPython on Adafruit's line of boards.		
BBC micro:bit Write MicroPython for the BBC micro:bit.		
Pygame Zero Make games with Pygame Zero.		
Python 3 Create code using standard Python 3.		
Change mode at any time by clicking the "Mode" button containing Mu's logo.	Cano	el

Import the .hex file. The path is as below:

File type	Path	File name
Python file	/project/1.1.Heartbeat	Heartbeat.py
~ ~ · · ·		

Successful loading is shown below.

You can also type the code by yourself.

🕜 Mu 1.0	D.1 - Heartbeat.py X
Mode untitled	Image: Save Image: Save
1	from microbit import *
2	while(True):
3	display.show(Image.HEART)
4	sleep(1000)
5	display.show(Image.HEART_SMALL)
6	sleep(1000)
	Microbit 🚺

Use the micro USB cable to connect micro:bit and PC, and click the **Flash** button to download the program into micro:bit.

If there are errors in your code, you may be able to successfully download it to micro:bit, but it will not work properly.

For example, the function sleep() was written as sleeps() in the following illustration. Click the button and the code can be uploaded to Micro:bit successfully. However, after the downloading completes, LED matrix prompts some error information and the number of the wrong line.

Click the "REPL" button and press the reset button (the button on the back, not A, B) on micro:bit. The error message will be displayed in the REPL box, as shown below:

Click REPL again, you will close REPL mode. And then you can flash new code.

To ensure the code is correct, after completing the code, click the "**Check**" button to check the code for errors. As shown below, click the "Check" button. Then Mu will indicate the error of the code.

🕜 Mu 1.	.0.1 - Heartbeat.py - D X	
Mode	Image: New Load Save Image:	
1	from microbit import *	-
2	while(True):	
3	display.show(Image.HEART)	
4	sleep(1000)	
5	display.show(Image.HEART_SMALL)	
6	sleeps(1000)	
	↑ undefined name 'sleeps'	
Saved file	:: F:/Freenove/Microbit/PythonCode/Heartbeat.py Microbit	

Correct the code according to the error prompt. Then click the "Check" button again, Mu displays no error on the bar below.

🕜 Mu 1.	0.1 - Heartbeat.py	- 0	×
Mode	Image: New Load Save Save Files REPL Plotter Qom-in Qom-out Theme Check Heat	? (Quit
1	from microbit import *		
2	while(True):		
3	display.show(Image.HEART)		
4	sleep(1000)		
5	display.show(Image.HEART_SMALL)		
6	sleep(1000)		
Awesome	? Zero problems found.	Microbit	0

Import necessary Python file into micro:bit

In the code of this tutorial, the LCD1602 module and DHT11 module are used, so it is necessary to import "I2C_LCD1602_Class.py" and "DHT11_RW.py" into the micro:bit. You can skip this section if you don't use them. When you need, you can come back to import them.

The import method is as follows:

Search on the C drive and find the "mu_code" folder.

'	- =			Manage	Local Disk (C:)							-	×
File	Home	Share	View	Drive Tools									~ 🕐
$\leftarrow \rightarrow$	· 1	■ → This P	C → Loc	al Disk (C:) >						~ Ō	Search Local	Disk (C:)	Q,
			^ N	ame	^	Date modified		Туре	Size				
Double	e click	on "m	u_coc	de" to ent	er the folder.								
🗐 I 💆	- -			Search Tools	mu_code - Search Results	in Local Disk (C:)						_	×
File	Home	Share	View	Search									~ 🕐
$\leftarrow \rightarrow$	× ↑ 🚺	🌗 🔸 Search	h Results i	in Local Disk (C:)						~ ×	mu_code		×
📌 Qu	iick access)esktop	Å		mu_cod Date modi	e fied: 27/09/2019 15:01		C:\Use	ers\Freenove					
↓ D E D	ownloads ocuments	A A A		C:\Users\F	e reenove\Recent		Туре:	Shortcut	Date m Size: 70	nodified: 08 bytes	29/09/2019 10:0	16	

Copy "I2C_LCD1602_Class.py" and "DHT11_RW.py" from following path into "mu_code" directory.

File type	Path	File name	
Python file	/Projects/PythonLibrary	I2C_LCD1602_Class.py DHT11_RW.py	

After pasting successfully, you can see them as below:

ults in Local Disk (C:) > mu_code			ٽ ~
Name	Date modified	Туре	Size
data_capture	25/09/2019 16:10	File folder	
fonts	27/07/2019 13:26	File folder	
📊 images	27/07/2019 13:26	File folder	
- music	27/07/2019 13:26	File folder	
	27/07/2019 13:26	File folder	
DHT11_RW.py	04/09/2019 11:43	PY File	7 KB
I2C_LCD1602_Class.py	06/09/2019 13:38	PY File	2 KB

Open the Mu software, click "Files". Here we take "I2C_LCD1602_Class.py" as an example, drag "I2C_LCD1602_Class.py" into micro:bit.

€ Mu 1.0.2	- 🗆 X
Image: Mode Imag	Check ? U
Select it and keep pressing with I	eft mouse button, drag it to left box.
Filewster an eigerbit	
Files on your micro:bit:	Files on your computer:
	DHT11_RW.py
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	I2C_LCD1602_Class.py
L Conving (CNUsers) Freenovelmu radeN2C LCD1602 Class rv/ to microrbit	Nicoli A

After importing successfully, you will see it on the left.

Files on your micro:bit:	Files on your computer:
I2C_LCD1602_Class.py	DHT11_RW.py I2C_LCD1602_Class.py

The import method of "DHT11_RW.py" is the same as described above. You just need to import the one you need to use.

Files on your micro:bit:	Files on your computer:
DHT11_RW.py	DHT11_RW.py
	I2C_LCD1602_Class.py

Note, after you upload other file into micro:bit, the original content will be covered. You need to import it next time you use it.

Chapter 1 LED matrix

The micro:bit integrates a 5x5 LED matrix, which is used as a display to display numbers, text, or simple images, which is useful and interesting.

Project 1.1 Heartbeat

This project uses a pattern built in MakeCode to make a heartbeat animation.

Component List

Circuit

Connect micro:bit and PC via a micro USB cable.

Block code

Open the MakeCode for the web version or MakeCode for the win10 version. Click on "New Project"

Click **basic** in the list on the left, select the desired code block, and drag it into the right code editing area.

Right click the mouse and select Duplicate to duplicate the code block.

If you want to delete the block, you can right click on the block and select "Delete Block". You can also drag it to left to delete it.

On the second block, click on the drop-down triangle next to the heart-shaped pattern on the block to display all the optional built-in patterns, select the second pattern, a small heart shape.

This completes the block code thie project.

Download the program to the microbit, the LED matrix on the micro:bit will continue to display a large heartshaped pattern and a small heart-shaped pattern, just like heartbeating.

If you did not master downloading, please refer to contents (How to download? How to quick download?).

Reference

Python Code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name			
Python file	/Projects/PythonCode/01.1_Heartbeat	Heartbeat.py			
After landing evenerate the theorem is a server believe					

After loading successfully, the code is shown below:

🕜 Mu 1.0	.2 - Heartbeat.py
Mode	Image: New Load Image: Save Image: Save
Heartbeat	. ру 🗶
1	<pre>from microbit import *</pre>
2	while True:
3	<pre>display.show(Image.HEART) # Display heartbeat pattern</pre>
4	<pre>sleep(1000) # Stop for 1 second</pre>
5	display.show(Image.HEART_SMALL)
6	sleep(1000)

Download the program to the microbit, the LED matrix on the micro:bit will continue to display a large heartshaped pattern and a small heart-shaped pattern, just like heartbeating.

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	display.show(Image.HEART)
4	sleep(1000)
5	display.show(Image.HEART_SMALL)
6	sleep(1000)

Python language is an interpreted language that is executed sequentially. In the code of this project, the micro:bit module is first imported, and then in a infinite loop statement, a large heart pattern and a small heart pattern are alternately displayed.

Next, we will explain the code line by line.

from microbit import *

Import everything in the microbit module, including functions, classes, variables, etc. You can also use **import microbit** directly. If you do this, you need to add "microbit." when you call the contents of this module in the program.

while True:

An infinite loop that will be executed circularly by microbit constantly.

display.show(Image.HEART)

Display heart pattern on LED matrix.

sleep(1000)

Delay for one second.

display.show(Image.HEART)
sleep(1000)
display.show(Image.HEART_SMALL)
sleep(1000)

Display the heart pattern on the LED matrix for one second, and then display the small heart pattern for another second.

Reference

from microbit import *
Import everything in the microbit module, including functions, classes, variables, etc. You can use all the
available contents in the micro:bit module in the next program.
while True:
While is a loop statement, if the condition is true, the code in while is executed.
This code with True means that the code in the while is always executed circularly.
display.show(image)
Display the image.
For more details about display,
please refer to: https://microbit-micropython.readthedocs.io/en/latest/display.html
For more details about image,
Please refer to: https://microbit-micropython.readthedocs.io/en/latest/image.html
<pre>sleep(t)</pre>
Delay for given number of milliseconds, should be positive or 0.
For more details about sleep function, please refer to:
https://microbit-micropython.readthedocs.io/en/latest/utime.html

Project 1.2 Displaying Number

In this project, we will use the LED matrix of the micro:bit to display numbers.

Circuit

Connect micro:bit and PC via a micro USB cable.

Block code

Open MakeCode first.

In this project, we will import the block code.

Click Import. Then click Import File.

Import

Import URL... Open a shared project URL or GithHub repo

ß
Import the .hex file. The path is as below:

File type	Path	File name					
HEX file	/ Projects/BlockCode/01.2_ShowNumber	ShowNumber.hex					
After load successfully, the code is shown as below:							

Search	Q fo	orever								
Basic		for ind	ex fro	om 0 to	0 10	0				
O Input		do show	number	inde						
O Music		SHOW	number	LING	-A •					
C Led				+	+					
Radio										
C Loops										
🗙 Logic										

Download the code into the micro:bit. After the downloading completes, the micro:bit LED matrix will start to display the numbers 0, 1, 2, 3, 4...99. Then start again from 0 to 99, so that it will cycle permanently.

In this code, a for loop is used. Each time the loop is executed, the value of the variable index is increased by 1. When the value is greater than 99, the for loop is exited. In the body of the loop, the value of the numeric index is displayed.

Reference

Block	Function
for index from 0 to 4 do	This is a for loop, the number (4) of loops can be changed, each time the index is incremented by 1. The loop won't end until the index is greater than the set value.
show number 1	Show a number on the LED screen. It will slide left if the number is more than one digit

Python code

Open the .py file with Mu. Code, the path is as below:

File	e type	Path	File name				
Pytł	hon file	/Projects/PythonCode/01.2_ShowNumber	ShowNumber.py				
After loa	ding succes	ssfully, the code is shown as below:					
@ Mu 1.0.2	- ShowNumber.py						
Image: Mode Image: Mode							
1 fi	rom micro	bit import *					
2 wł	2 while True:						
3	for in	dex in range(0, 100):					
4	di	<pre>splay.scroll(str(index))</pre>					

Download the code into the microbit. After the downloading completes, the microbit LED matrix will start to display the numbers 1, 2, 3, 4...100. Then start again from 1 to 100, so that it will repeat endlessly.

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	for index in range(0, 100):
4	display.scroll(str(index))

The code of this project, in a 0-100 for loop, scrolls through the cyclic number index, which is incremented by 1.

Reference

display.scroll(value)

Scrolls value horizontally on the display. If value is an integer or float it is first converted to a string using str().

For more information, please refer to: <u>https://microbit-micropython.readthedocs.io/en/latest/utime.html</u>

Project 1.3 Displaying Text

This project uses the LED matrix of micro:bit to display text (ASCII).

Circuit

Connect micro:bit and PC via micro USB cable.

Block code

Open MakeCode first.Import the .hex file. The path is as below:(How to import project)

File type	Path	File name					
HEX file	/Projects/BlockCode/01.3_ShowText	ShowText.hex					
After loading successfully, the code is shown as below:							

After loading successfully, the code is shown as below:

Search	Q					+						
Basic		f	oreve	r			_					
⊙ Input			show	stri	ng ("	Hello	o, Fr	eeno	/e!"			
😡 Music		-	+		+	+						
C Led												
Radio												
C Loops												
🔀 Logic												

Download the code into the microbit, the micro:bit LED matrix will scroll from left to right to display "Hello, Freenove!"

Reference

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/01.3_ShowText	ShowText.py

After loading successfully, the code is shown as below:

🕜 Mu 1.	0.1 - ShowText.py – 🗆 🗙
Mode	Image: New Load Image: Save Image: Save
ShowText.	py X
1	from microbit import *
2	while True:
3	display.scroll("Hello, Freenove!")
4	
5	
	Microbit 🔯

Download the code into the microbit, the microbit LED matrix will scroll from left to right to display "Hello, Freenove!"

The following is the program code:

This code scrolls through the text "Hello, Freenove!" in a while loop.

Project 1.4 Displaying Custom

This project uses a micro:bit LED matrix to display a custom pattern.

Circuit

Connect micro:bit and PC via micro USB cable.

Hardware connection

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type		Path					File name					
HEX file	/Pr	ojects/BlockCode/01.	.4_Show	Cust	om		ShowCustom.hex					
After loading succes	ssfully, the c	ode is shown as belo	W:									
Search	Q											
Basic		forever										
Input		show leds										
O Music												
C Led												
Radio												
C Loops												

Check the connection of the circuit and verify it correct. Then download the code into the microbit, and the square pattern shown above will appear on the LED matrix of the micro:bit.

Reference

Block	Function
show leds	Shows a picture on the LED screen.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/01.4_ShowCustom	ShowCustom.py
After loading succes	ssfully, the code is shown as below:	
🕞 Mu 1.0.2 - custom pattern.p	y .	
	ad Save Flash Files REPL Plotter Coom-in Zoom-out	Theme Check Help Quit
Heartbeat.py 🗙 text.py 🗙	custom pattern.py 🗶	
1 from micro	bit import *	
2		
₃ smile = Im	age("00000:"	
4	"09090:"	
5	"00000:"	
6	"90009:"	
7	"09990")	
8	:	
9 while True	:	
10 displa	y.show(smile)	

Download the code into the microbit, and a square pattern will appear on the microbit LED matrix. (How to download?)

The following is the program code:

1	<pre>from microbit import *</pre>
2	
3	img = Image("00000:"
4	″09990:″
5	″09090:″
6	″09990:″
7	″00000″)
8	
9	while True:
10	display.show(img)

Create an image in the code and define it as **img**, then display the defined image in a while loop. As shown in the code below, the parameters in Image consist of 5 strings. Each line of characters corresponds to a row of LEDs. Each digit represents the brightness of an LED. The value ranges from 0 to 9, the larger the number, the brighter the LED.

1	img = Image("00000:"
2	″09990:″
3	″09090: ″
4	″09990:″
5	″00000″)

Reference

img = Image("00000:"										
<i>"</i> 09990: <i>"</i>										
<i>"</i> 09090: <i>"</i>										
<i>"</i> 09990: <i>"</i>										
″00000″)										
Create an image of LED, an	Create an image of LED, and set brightness of LED.									
For more information, please refer to:										
https://microbit-micropythe	https://microbit-micropython.readthedocs.io/en/latest/image.html									

Chapter 2 Built-in Button

Keyboards or buttons are important tools for human-computer interaction. We often use keyboards to enter text, type commands, control devices, etc. Two programmable buttons A and B are integrated on the micro:bit to easily control the micro:bit to make actions.

Project 2.1 Button A and B

This project uses micro:bit integrated buttons A and B. When different buttons are pressed, micro:bit displays different patterns.

Circuit

Connect micro:bit and PC via micro USB cable.

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name						
HEX file	/Projects/BlockCode/02.1_BuiltInButton	BuiltInButton.hex						
After leading successfully the endering how as helew:								

After loading successfully, the code is shown as below:

Search Q	
Basic	forever
O Input	if button A+B • is pressed then
O Music	show icon 🗸 🔻
Led	else if button A → is pressed then ⊖
Radio	show arrow West
C Loops	else if button B • is pressed then 🔾
🔀 Logic	show arrow East
Variables	
🖬 Math	
▲ Advanced	
$f_{(x)}$ Functions	

Download the code into micro:bit. When button A is pressed, the micro:bit LED matrix will display an arrow pointing to button A. When button B is pressed, the micro:bit LED matrix will display an arrow pointing to button B. When the buttons A and B are pressed at the same time, the micro:bit LED matrix will display a check mark. When no button is pressed, the micro:bit LED matrix displays a cross.

Reference

Block	Function
button A 🔹 is pressed	Check whether a button is pressed at the moment. The micro:bit has two buttons: button A and button B.
on button A ▼ pressed	This handler works when button A or B is pressed, or A and B together.

Python code

Open the .py file with Mu. Code, the path is as below:

Fi	ile type	Path	File name
P	ython file	/Projects/PythonCode/02.1_BuiltInButton	BuiltInButton
After Ic	ading succes	sfully, the code is shown as below:	
🕜 Mu 1.0.	2 - BuiltInButton.py		- 🗆 ×
Mode	+ toa	A Save Kepler Com-in Com-out	Theme Check Help Quit
BuiltInButt	ton. py 🗶		
1 1	from microb	oit import *	
2 V	while True:		
3	if butt	<pre>con_a.is_pressed() and button_b.is_pressed():</pre>	
4	dis	splay.show(Image.YES)	
5	elif bu	utton_a.is_pressed():	
6	dis	splay.show(Image.ARROW_W)	
7	elif bu	<pre>itton_b.is_pressed():</pre>	
8	dis	splay.show(Image.ARROW_E)	
9	else:		
10	dis	splay.show(Image.NO)	

Download the code into micro:bit. When button A is pressed, the micro:bit LED matrix will display an arrow pointing to button A. When button B is pressed, the micro:bit LED matrix will display a an arrow pointing to button B.When the buttons A and B are pressed at the same time, the micro:bit LED matrix will display a check mark. When no button is pressed, the micro:bit LED matrix displays a cross.

The following is the program code:

```
from microbit import *
1
2
3
      while True:
          if button_a.is_pressed() and button_b.is_pressed():
4
5
              display. show (Image. YES)
6
          elif button_a.is_pressed():
              display. show (Image. ARROW_W)
7
8
          elif button_b.is_pressed():
              display. show (Image. ARROW_E)
9
10
          else:
11
              display. show (Image. NO)
```

Use the if-elif-else statement to determine when the button is pressed. First, when the buttons A and B are pressed at the same time, a check mark is displayed.

<pre>if button_</pre>	_a.is_pr	essed ()	\mathbf{and}	button_	b.is	_pressed	0:
displa	y.show	Image.YI	ES)				

Then, determine in turn if the buttons A or B is pressed seperately, and the case where no button is pressed.

elif button_a.is_pressed():
 display.show(Image.ARROW_W)
elif button_b.is_pressed():
 display.show(Image.ARROW_E)
else:
 display.show(Image.NO)

Note that it is necessary to first determine if buttons A and B are pressed at the same time. If-elif-else statement will make the micro:bit execute only one situation. If the state with two buttoon pressed is placed in last, the result of pressing A or B will appear first, then the statement will end, and then sentence met the state with two button pressed will never be executed.

Reference

is_pressed()	
Returns True if the specified	d button is currently being pressed, and False otherwise.
For more information, pleas	se refer to https://microbit-micropython.readthedocs.io/en/latest/button.html

Chapter 3 LED

This section we will learn how to control external LEDs.

Project 3.1 Blink

This project uses micro:bit to control LED blinking.

Component List

Circuit Knowledge

Current

The unit of current (I) is ampere (A). 1A=1000mA, 1mA=1000µA.

Closed loop consisting of electronic components is necessary for current.

In the figure below: the left is a loop circuit, so current flows through the circuit. The right is not a loop circuit, so there is no current.

Resistor

Resistors use Ohms (Ω) as the unit of measurement of their resistance (R). 1M Ω =1000k Ω , 1k Ω =1000 Ω . A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.

On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the presence of a resistor in a circuit diagram or schematic.

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of resistor color codes, please refer to the card in the kit package.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as Ohm's Law where I = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows you to solve the value of the third.

In the following diagram, the current through R1 is: $I=U/R=5V/10k\Omega=0.0005A=0.5mA$.

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a metal object or bare wire) this is a Short and results in high current that may damage the power supply and electronic components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction you insert them into a circuit, it will work the same)

Analog signal and Digital signal

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discretetime signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A familiar example of an Analog Signal would be how the temperature throughout the day is continuously changing and could not suddenly change instantaneously from 0°C to 10°C. However, Digital Signals can instantaneously change in value. This change is expressed in numbers as 1 and 0 (the basis of binary code). Their differences can more easily be seen when compared when graphed as below.

Note that the Analog signals are curved waves and the Digital signals are "Square Waves". In practical applications, we often use binary as the digital signal, that is a series of 0's and 1's. Since a binary signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals can be converted into the other.

Low level and high level

In circuit, the form of binary (0 and 1) is presented as low level and high level.

Low level is generally equal to ground voltage (0V). High level is generally equal to the operating voltage of components.

The low level of Micro:bit is 0V and high level is 3.3V, as shown below. When IO port on Micro:bit outputs high level, low-power components can be directly driven, like LED.

Component knowledge

Let us learn about the basic features of components to use them better.

Jumper

Jumper is a kind of wire, which is designed to connect the components together by inserting its two terminals.

Jumpers have male end (pin) and female end (slot), so jumpers can be divided into the following 3 types.

Breadboard

There are many small holes on breadboard to connect Jumper.

Some small holes are connected inside breadboard. Here we have a small breadboard as an example of how the rows of holes (sockets) are electrically attached. The left picture shows the ways the pins have shared electrical connection and the right picture shows the actual internal metal, which connect these rows electrically.

1	-	+			•	-	-	-		•	-	-	1					-	-		+	+	+	+	•	
- 7	7	T T					10	7	7	• 1	1	1	7	7	1	20	7	7	7	7	52 9	2	7 1		02 0	
I H D	ļ	H	ŧ				ŧ	ļ		0 1 0 1		1	1	-	1	-	1	-	ļ	ŧ	ļ	ļ				1 1 2
u 4	•	• •	•	•			•	•				1	•	•	4	•	•	•	•	•	9	8				н н
-	ł	H	ł	H		ł	ł	ł	[ł	ł	ł	ł	ł	I	ł	ł	ł	ł	ł	I			
A B	ţ	łł	ł			ł	ł	ł				ł	ł	ł	ł	1	ł	ł	ł	ţ	ţ	ł				0 1
i ner			: 123				10				15					20					25				30	-
		-		_	-	-		-		+	-	-		-					-	_	-	-	-	-	-	_

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles. An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power source and the shorter pin is connected to the negative (-) negative output also referred to as Ground (GND). This type of component is known as "Polar" (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode is higher than its negative electrode and there is a narrow range of operating voltage for most all common diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burn out.

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A resistor with a specified resistance value must be connected in series to the LED you plan to use.

Circuit

When wiring, it is recommended to disconnect all the power supplies in the circuit, and then build the circuit according to the circuit (micro:bit board cannot be inserted reverse),

LED's positive pole (long pin) should be connected to resistor while its negative pole (short pin) should be connected to GND. After the circuit is built and verified correct, use the USB cable to connect the PC to the micro:bit to power the circuit.

CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)! WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause permanent damage to your micro:bit!

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name
HEX file	/Projects/BlockCode/03.1_Blink	Blink.hex

After import successfully, the code is shown as below:

Search	Q	forever + + + + + + + +
Basic		digital write pin $P0 = t_0$
 Input 		
O Music		
C Led		digital write pin P0 ▼ to 0
Radio		pause (ms) 500 V
C Loops		

Download the code into the micro:bit and the LED on the breadboard will begin to blink.

In the code, write 1 to the P0 port to turn ON the LED. After waiting for 500ms, write 0 to the P0 port to turn OFF the LED. After waiting for 500ms, the LED will be turned ON again. Repeat the loop, then LED will start blinking.

forever					
digital write pin P0 → to 1					
pause (ms) 500 -					
digital write pin P0 🕶 to 📀					
pause (ms) 500 -					

Reference

Block	Function		
pause (ms) 100 🔻	Pause the program for the number of milliseconds you set. You can use this function to slow your program down.		
digital write pin P0 to 1	Write a digital (0 or 1) signal to a pin on the micro:bit board.		

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name		
Python file	/Projects/PythonCode/03.1_Blink	Blink.py		

After loading successfully, the code is shown as below:

🕐 Mu 1.0	0.1 - Blink.py – 🗆 🗙
Mode Blink. py	Image: New Load Image: Save Image: Save </th
1	from microbit import *
2	
3	while True:
4	pin0.write_digital(1)
5	sleep(500)
6	pin0.write_digital(0)
7	sleep(500)
	Microbit 🔅

Download the code into micro:bit and the LED on the breadboard will start to blink. (How to download?)

The following is the program code:

1	<pre>from microbit import *</pre>
2	
3	while True:
4	pinO.write_digital(1)
5	sleep (100)
6	pinO.write_digital(0)
7	sleep (100)

In the code, write 1 to the P0 port to turn ON the LED. After waiting for 500ms, write 0 to the P0 port to turn OFF the LED. After waiting for 500ms, the LED will be turned ON again. Repeat the loop, then LED will start blinking.

Write a high level to pin P0.

$\min(1)$ multiplication $\binom{1}{2}$

Delay 500ms

sleep**(500)**

Then write low level, and then delay 500ms. Repeat actions above.

Reference

pin.write_digital(value)
Set the pin to high if value is 1, or to low, if it is 0.

For more information, please refer to:<u>https://microbit-micropython.readthedocs.io/en/latest/pin.html</u>

Chapter 4 Button and LED

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL. In last section, the LED module was the output part and micro:bit was the control part. In practical applications, we not only make the LEDs flash, but also make a device sense the surrounding environment, receive instructions and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 4.1 Control LED by Button

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component list

Circuit knowledge

Connection of Push Button Switch

We connect a push button switch directly to the circuit to turn ON or OFF the LED. In digital circuits, we need to use the push button switch as an input signal. The recommended connection is as follows:

In the above circuit diagram, when the button is not pressed, 3.3V (high level) will be detected by I/O port; and when the button is pressed, it will be 0V (low level). Resistor R2 here is used to prevent the port from being set to output high level by accident. Without R2, the port maybe connected directly to the cathode and cause a short circuit when the button is pressed.

The following diagram shows another connection, in which the level detected by I/O port is opposite to above diagram, when the button is pressed or not.

Circuit

The P0 pin detects the button and the P1 pin controls the LED.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

Download the code into micro:bit. When the button is pressed, the LED will be turned on. When the button is released, the LED will be turned off.

In the program, read the level of the P0 pin to determine if the button is pressed.

If P0 pin is low level, it indicates that the button is pressed, and make P1 pin output 1, then LED will be turned ON.

Otherwise, P1 pin outputs 0, and the LED will be turned OFF.

Reference

Block	Function			
digital read pin P8	Read a digital (0 or 1) signal from a pin on the micro:bit board.			

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/04.1_ButtonAndLED	ButtonAndLED.py
After loading succ	essfully, the code is shown as below:	
🕜 Mu 1.0.2 - ButtonAndLED.;	у	– 🗆 X
	ad Save Flash Files REFL Plotter Com-in Zoom-out	Theme Check Help Quit
1 from micro	bit import *	
2		
3 while True	:	
4 buttor	State = pin0.read_digital()	
5 if but	tonState == 0:	
6 p 1	n1.write_digital(1)	
7 else:		
8 pf	n1.write_digital(0)	

Download the code into micro:bit. When the button is pressed, the led will be turned ON. When the button is released, the led will be turned OFF.

(How to download?)

The following is the program code:

1	from microbit import *
2	while True:
3	<pre>buttonState = pin0.read_digital()</pre>
4	<pre>if buttonState == 0:</pre>
5	pin1.write_digital(1)
6	else:
7	pin1.write_digital(0)

In the program, read the level of the P0 pin, save the read level value in the variable buttonState, and then determine whether the button is pressed.

buttonState = pin0.read_digital()

If the read P0 pin is low, it indicates that the button is pressed, and then make P1 pin output 1, so LED will be turned ON. Otherwise, the P1 pin outputs 0, and the LED will be turned OFF.

if buttonState == 0:
 pin1.write_digital(1)
else:
 pin1.write_digital(0)

Reference

pin.read_digital()

Return 1 if the pin is high level, and 0 if it's low.

For more information, please refer to: <u>https://microbit-micropython.readthedocs.io/en/latest/pin.html</u>

Project 4.2 Table Lamp

In this project, we will make a table lamp. The components and circuits used are exactly the same as the previous one, but this will function differently: Press the button, the LED will turn ON, and pressing the button again, the LED turns OFF. The ON switch action is no longer momentary (like a door bell) but remains ON without needing to continually press on the Button Switch.

Component list

It is same as the previous project.

Circuit knowledge

Debounce for Push Button

When a Momentary Push Button Switch is pressed, it will not change from one state to another state immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it stabilizes in a new state too fast for Humans to detect but not for computer microcontrollers. The same is true when the push button switch is released. This unwanted phenomenon is known as "bounce".

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our solution: to judge the state of the button multiple times. Only when the button state is stable (consistent) over a period of time, can it indicate that the button is actually in the ON state (being pressed). This project needs the same components and circuits as we used in the previous section.

Circuit

It is same as the previous section.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path		File	e name		
HEX file	/Projects/BlockCode/04.2_TableLamp		Table	Lamp.ł	iex	
After importing success	fully, the code is shown as below:					
Search O	on start					
Basic	set status - to 0					
⊙ Input						
O Music	forever					
C Led	if digital read pin P0 • = • 0 •	then				
I Radio		-				
C Loops						
C Logic	$ \begin{array}{c} \text{if} \text{digital read pin } P0 \bullet \\ \bullet $	then				
Variables	if status ▼ = ▼ 0 then					
Math	set status • to 1					
✓ Advanced	else 💮 👘					
	set status 🔹 to 🔞					
	digital write pin P1 ▼ to status ▼	-				
	while digital read pin PO • = • 0					
	do pause (ms) 10 🔹	+				

Download the code to micro:bit, press the button once, the LED turns ON, press the button again, the LED turns OFF. .

In the program, when it is detected for the first time that the button is pressed, wait for 10ms to detect whether the button is pressed again, to skip the bounce when the button is pressed. And if the button is still detected as pressed for the second time, the button is considered to have been pressed and in a steady state. Otherwise, it is considered to be a bounce and the program will stop detecting..

When it is determined that the key is pressed, change the status value. Status is used to save the state of LED. And then write the new value of status to the P1 port to control the LED.

After the above operations done, the program will detect whether the button is released. And similarly, it will first eliminate the bounce of the button.

Reference

Block	Function		
set status 🔻 to 🥹	Use an equal sign to make a variable store the number or string you set.		

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name			
Python file/Projects/PythonCode/04.2_TableLamp		TableLamp.py			
After loading succe	ssfully, the code is shown as below:				
🕞 Mu 1.0.1 - TableLamp.py		- 🗆 X			
	ad Save Flash Files REPL Plotter Com-in Zoom-out	Theme Check Help Quit			
TableLamp.py X	sit impact t				
	TC Import *				
3 status = 0					
4					
5 while True	5 while True:				
6 if pind).read_digital() == 0:				
7 sle	eep(10)				
8 if	pin0.read_digital() == 0:				
9	if status == 0:				
10	status = 1				
11	else:				
12	status = 0				
13	pin1.write_digital(status)				
14	<pre>while pin0.read_digital() == 0:</pre>				
15	sleep(10)				
		Microbit 😨			

Download the code to micro:bit, press the button once, the LED turns ON; press the button again, the LED turns OFF.

The following is the program code:

```
from microbit import *
1
2
     status = 0
3
     while True:
4
         if pin0.read_digital() == 0:
5
              sleep(10)
6
              if pin0.read_digital() == 0:
7
                  if status == 0:
8
                      status = 1
                  else:
9
                      status = 0
10
11
                  pin1.write_digital(status)
                  while pin0.read_digital() == 0:
12
13
                      sleep(10)
```

In the program, when it is detected for the first time that the button is pressed, wait for 10ms to detect whether the button is pressed again, to eliminate the impact of bounce when the button is pressed. And if the button is still pressed for the second time, the button is considered to have been pressed and in a steady state. Otherwise, it is considered to be a bounce and exit this judgment.

```
if pin0.read_digital() == 0:
    sleep(10)
    if pin0.read_digital() == 0:
```

When it is determined that the key is pressed, change the status value. Status is used to save the state of LED. And then write the new value of status to the P1 port to control the LED.

```
if status == 0:
    status = 1
else:
    status = 0
pinl.write_digital(status)
```

After the above operations done, the program will detect whether the button is released. And similarly, it will first eliminate the bounce of the button.

while pin0.read_digital() == 0:
 sleep(10)

Chapter 5 LED Bar Graph

We have learned how to control LED blink. Next step, we will learn a new component LED bar graph.

Project 5.1 Flowing Light

In this project, we use LED Bar Graph to make a flowing water light.

Component list

Component knowledge

Let us learn about the basic features of components to use and understand them better.

LED Bar Graph

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom are paired to identify each LED like the single LED used earlier.

Circuit

support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

Check the connection of the circuit, verify that the circuit is connected correctly, download the code into micro:bit, after the program is executed, you will see the LED turns ON from left to right, which repeats This process is repeated to achieve the "movements" of flowing water.
In the code, we need turn OFF the LED screen (which allows the GPIO pin associated with the LED screen to be reused for other purposes).

Set one pin to high and the rest of 9 pins to low level at a time; Until all the 10 pins are set to high and low level in turn.

Reference

Block	Function
led enable false 🔻	Turns the LED screen on and off (thus allowing you to re-use the GPIO pins associated with the display for other purposes)

Python code

Open the .py file with Mu. Code, the path is as below:

File ty	File type Path		File name				
Pytho	n file	/Projects/PythonCode/05.1_FlowingLight01	FlowingLight01.py				
After loading	After loading successfully, the code is shown as below:						
🕜 Mu 1.0.2 - Flow	vingLight01.p	у	- 🗆 X				
	Image: Mode Imag						
FlowingLight01.py	×						
1 from	micro	bit import *					
2 disp	lay.of	f()					
3 outP	outPin = [pin0, pin1, pin2, pin3, pin4, pin10, pin6, pin7, pin9, pin8]						
4 whil	while True:						
5	for p in outPin:						
6	р.	write_digital(1)					
7	sleep(100)						
8	р.	write_digital(0)					
9	sl	eep(100)					

Check the connection of the circuit, verify that the circuit is connected correctly, download the code into micro:bit, after the program is executed, you will see the LED turns ON from left to right, which repeats to achieve the "movements" of flowing water.

The following is the program code:

1	<pre>from microbit import *</pre>
2	display.off()
3	outPin = [pin0, pin1, pin2, pin3, pin4, pin10, pin6, pin7, pin9, pin8]
4	while True:
5	for p in outPin:
6	<pre>p.write_digital(1)</pre>
7	sleep(100)
8	<pre>p.write_digital(0)</pre>
9	sleep(100)

In the code, we need to turn OFF the LED screen (which allows the GPIO pin associated with the LED screen to be reused for other purposes).

display.off()

Define an array to save the pin variable.

outPin = [pin0, pin1, pin2, pin3, pin4, pin6, pin7, pin8, pin9, pin10]

Change the level of the currently selected pin every 100ms to implement the effect of flowing water light.

```
for p in outPin:
    p.write_digital(1)
    sleep(100)
    p.write_digital(0)
    sleep(100)
```

Reference

display.off()

Use off() to turn OFF the display (thus allowing you to re-use the GPIO pins associated with the display for other purposes)

Chapter 6 PWM

In this chapter, we will learn how to make a breathing LED.

Project 6.1 Breathing Light

Component list

Circuit knowledge

At first, let us learn the knowledge how to use the circuit to make LED emit different brightness of light,

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits. Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high level outputs are generally called "pulse width", and the duty cycle is the percentage of the ratio of pulse duration, or pulse width (PW) to the total period (T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following figures show how the analog signal voltages vary between 0V-5V (high level is 5V) corresponding to the pulse width 0%-100%:

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

support@freenove.com

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name		
HEX file	/Projects/BlockCode/06.1_BreathingLight	BreathingLight.hex		
After import augessefully, the ende is shown as helew:				

After import successfully, the code is shown as below:

Search	Q	forever + + + + + +
Basic		for i from 0 to 500
O Input		do analog write pin P0 💌 to i 💌
Music		
C Led		pause (ms) 1
Radio		for k from 0 to 500 to the the the the
C Loops		
🔀 Logic		analog write pin P0 + to 500 - K +
🔳 Variables		pause (ms) 1 •
📆 Math		

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into micro:bit. The LED will becomes brighter gradually, and then dimmer and dimmer. This process will be repeated to achieve the effect of breathing.

P0 outputs PWM signal, from 0 to 500, then from 500 to 0.

for	i from 0 to	500					
do	analog write pin	P0 🔻	to	i 🔻	+		
	pause (ms) 1 🔻	+	+	+	+		
for	k from 0 to	500	+	+	+	+	
do	analog write pin	P0 🔻	to	500	- •	k	\cdot
	pause (ms) 1 🔻	+	+	+	+	+	+

Reference

Block	Function
analog write pin P0 to i	Write an analog signal (0 through 1023) to the pin you set.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name				
Python file	/Projects/PythonCode/06.1_BreathingLight	BreathingLight.py				
After loading succes	ssfully, the code is shown as below:					
🕜 Mu 1.0.2 - BreathingLight.p	у	- 🗆 X				
	Image: Mode Imag					
BreathingLight.py 🗶						
1 from micro	bit import *					
2 while True	:					
з for i	in range(0, 500, 1):					
4 pin	0.write_analog(i)					
5 sle	5 sleep(1)					
6						
7 for i	7 for i in range(500, 0, -1):					
8 pin	pin0.write_analog(i)					
9 sle	ep(1)					

Check the connection of the circuit, verify it correct and download the code into micro:bit, the LED will becomes brighter gradually, and then dimmer and dimmer. This process will be repeated to achieve the effect of breathing. (How to download?)

The following is the program code:

1	<pre>from microbit import *</pre>
2	
3	while True:
4	for i in range(0, 500, 1):
5	<pre>pin0.write_analog(i)</pre>
6	sleep(1)
7	
8	for i in range(500, 0, -1):
9	<pre>pin0.write_analog(i)</pre>
10	sleep(1)

P0 outputs PWM signal, from 0 to 500,

for i in range(0, 500, 1):
 pin0.write_analog(i)
 sleep(1)

Then from 500 to 0.

for	i	in	range (500,	0,	-1):
		p	inO.write_a	nal	og(i)
		s	leep(1)		

Reference

pin.write_analog(value)
Output a PWM signal on the pin, with the duty cycle proportional to the provided value. The value may be
either an integer or a floating point number between 0 (0% duty cycle) and 1023 (100% duty)
For more information, please refer to:

https://microbit-micropython.readthedocs.io/en/latest/pin.html

Chapter 7 RGBLED

In this chapter, we will learn a new component, RGBLED.

Project 7.1 Monochromatic Light

This project will use RGBLED to show one color.

Component list

Component knowledge

RGB LED

A RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of a RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and brightness by controlling the 3 Anodes (2, 3 & 4) of the RGB LED

Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints, the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 28*28*28=16777216 (16 million) colors through different combinations of RGB light brightness.

Circuit

This circuit uses pins P2, P1, and P0 to connect the negative electrodes of the RGBLED.

support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below: (how to import project)

File type	Path	File name		
HEX file	/Projects/BlockCode/07.1_RGBLED	RGBLED.hex		
After importing s	successfully, the code is shown as below:			
Search	o forever + + + + + + + +	+ + + + + +		
Basic	set red v to 255			
O Input	set green v to 255			
Music	set blue V to 0			
C Led		low 1032 high 0		
Radio	set reavito map reav from 100 0 nign 255 to	low 1023 high 0		
C Loops	set green ▼ to map green ▼ from low Ø high 255	to low 1023 high 0		
🔀 Logic	set blue ▼ to map blue ▼ from low @ high 255	to low 1023 high 0		
📕 Variables	analog write pin P2 🔻 to red 🔻	+ + + + +		
📰 Math	analog write pin P1 🔻 to green 🔻			
Advanced	analog write pin P0 🔻 to blue 🔻			
f(x) Functions				

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into micro:bit, and RGBLED will emit yellow color. RGB value of yellow is (255,255,0).

In this kit, three LEDs of RGB LED share a common anode(+) and their negative pins need to be set to LOW level to have the RGB LED work. And the value of variables 'red', 'green', and 'blue' need to be converted from the value ranging from 0-255 to analog signal values ranging from1023-0.

support@freenove.com

Write the 'red', 'green', 'blue' to corresponding pins P2, P1, P0.

Reference

Block	Function
map 0 from low 0 high 1023 to low 0 high 4	Convert a value in one number range to a value in another number range.

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path		File name			
	Python file /Projects/PythonCode/07.1_RGBLED RGBLED.py				
After	oading succes	sfully, the code is shown as below:			
🕜 Mu 1.	0.2 - RGBLED.py		– 🗆 X		
Mode RGBLED. py	Image: Mode Image: Mode				
1	from microb	oit import *			
2	def map(value, fromLow, fromHigh, toLow, toHigh):				
3	return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow				
4	red=255				
5	green=255				
6	blue=0				
7	<pre>7 red=map(red,0,255,1023,0)</pre>				
8	green=map(green,0,255,1023,0)				
9	<pre>blue=map(blue,0,255,1023,0)</pre>				
10	<pre>pin2.write_analog(red)</pre>				
11	<pre>pin1.write_analog(green)</pre>				
12	<pre>pin0.write_analog(blue)</pre>				

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into micro:bit, and RGBLED will emit yellow color. (How to download?)

The following is the program code:

1	<pre>from microbit import *</pre>		
2	<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>		
3	return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow		
4	red=255		
5	green=255		
6	blue=0		
7	red=map(red, 0, 255, 1023, 0)		
8	green=map(green, 0, 255, 1023, 0)		
9	blue=map(blue, 0, 255, 1023, 0)		
10	pin2.write_analog(red)		
11	<pre>pin1.write_analog(green)</pre>		
12	pinO.write_analog(blue)		

A custom map() function is used to convert a value in one range to another range.

def map(value, fromLow, fromHigh, toLow, toHigh):
 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

RGB value of yellow is (255,255,0).

red=255
green=255
blue=0

In this kit, three LEDs of RGB LED share a common anode(+) and their negative pins need to be set to LOW level to have the RGB LED work. And the value of variables 'red', 'green', and 'blue' need to be converted from the value ranging from 0-255 to analog signal values ranging from1023-0.

red=map (red, 0, 255, 1023, 0) green=map (green, 0, 255, 1023, 0) blue=map (blue, 0, 255, 1023, 0)

Write the 'red', 'green', 'blue' to corresponding pins P2, P1, P0.

pin2.write_analog(red)
pin1.write_analog(green)
pin0.write_analog(blue)

Reference

map(value, fromLow, fromHigh, toLow, toHigh)

A custom function that converts a value in a range of numbers to a value in another range of numbers. For example, map(8,0,10,0,100) returns a value of 80; map(8,0,10,100,0)=20. map(8,0,10,0,100)=80.

Project 7.2 Multicolored Light

In this project, we will use an RGB LED to emit different colors.

Component list

It is same with the previous project.

HSL color

The HSL color mode is another color standard in the industry. It obtains a variety of colors by changing the three color channels of hue (H), saturation (S), and lightness (L) and superimposing them with each other. This color mode covers almost all colors that human vision can perceive. It is one of the most widely used color systems to date.

As shown in the hue circle below, the 0 degree of the hue is R (red) color, 120 degrees is G (green) color, and 240 degrees is B (blue) color. Each angle represents a color. The default saturation (S) takes the maximum value 100, the brightness (L) takes 50. If the hue angle is changed, the color will be changed. And the HSL color system can be converted to the RGB color system, to change the color of the LED.

Circuit

It is same with last project.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path File name			
HEX file	/Projects/BlockCode/07.2_ColorfulLight ColorfulLight.hex			
After importing s	successfully, the	e code is shown as below:		
Search	Q for	rever		
Basic	f	for from 0 to 360		
O Input	4	o set RGBColor ▼ to hue index ▼ saturation 100 3	luminosity 50	
		set blue ▼ to remainder of RGBColor ▼ ÷ 255		
C Led		set green ▼ to remainder of RGBColor ▼ ÷ 65535	÷▼ 255	
I Radio				
C Loops		set red V to RGBColor V ÷ 65535		
🗙 Logic		set red ▼ to map red ▼ from low 0 high 255	to low 1023 high 0	
🔳 Variables		set green ▼ to map green ▼ from low ∂ high (255 to low 1023 high 0	
📰 Math		set blue 🔻 to map blue 🔻 from low 0 high 25	5 to low 1023 high 0	
🔅 Neopixel		analog write pin P0 🔻 to blue 🔻		
✓ Advanced	Ŀ	analog write pin P1 🔻 to green 🔻		
		analog write pin P2 ▼ to red ▼		
		pause (ms) 10 🔻		

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into the microbit, and RGBLED will emit different colors.

From the knowledge of HSL color, we can know that different hue angles correspond different colors. The variable index represents hue angle, ranging from 0 to 360.

This block is to convert the HSL color system to the RGB color system, return the RGB value corresponding to the current hue angle, and store the value in the variable RGBColor. For example: hexadecimal RGB value 0xFF0000 means red, FF is the value of the red channel in RGB, and 00 and 00 are the values of the green and blue channels, respectively.

Assign the value of the lower eight-bit to blue channel, the value of the middle eight-bit to green channel, and the value of the upper eight-bit to red channel.

In this kit, three LEDs of RGB LED share a common anode (+) and their negative pins need to be set to LOW level to have the RGB LED work. And the variables 'red', 'green', and 'blue' need to be converted from the value ranging from 0-255 to analog signal values ranging from1023-0.

set	red 🔻 to	map red - from low 0 high 255 to low 1023 high 0
set	green 🔻 to	map green V from low 0 high 255 to low 1023 high 0
set	blue 🔻 to	map blue v from low 0 high 255 to low 1023 high 0

Every 10ms, write the 'red', 'green', 'blue' to corresponding pins P2, P1, P0.

Reference

Block	Function	
	This is an extra operator for division. You can find	
remainder of 0 ÷ 1	out how much is left over if one number doesn't	
	divide into the other number evenly.	
	Convert HSL color system to RGB color system, and	
hue 0 saturation 0 luminosity 0	return the RGB value corresponding to the current	
	hue angle. It belongs to Neopixel expansion block.	

Extensions

You can import Neopixel expansion block into new project as below:

Python code

Open the .py file with Mu. Code, the path is as below:

Python file ./Projects/PythonCode/07.2_ColorfulLight ColorfulLight.py After loading successfully, the code is shown as below:	File type Path		File name				
After loading successfully, the code is shown as below: (Mu 1.02 - ColorMilightyy - C - C × Mode Wu 1.02 - ColorMilightyy & C - C - C - X Mode New Load Save Save Pieter Pieter 2 Concerning Concer	Py	thon file	ColorfulLight.py				
<pre></pre>	After loa	After loading successfully, the code is shown as below:					
<pre>Note N</pre>	🕜 Mu 1.0.2	- ColorfulLight.pv		– 🗆 X			
<pre>Note Note Note Note Note Note Note Note</pre>							
<pre>New Load Save Flack Files REFL Flotter Zoom-in Zoom-out Theme Check Help Quit CalerAdLight.yy X from microbit import * def map(value, fromLow, fromHigh, toLow, toHigh): return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow def HSL_RGB(degree): degree=degree(360*255 if degree < 85: red = 255 - degree * 3 green = degree - 85 red = 0 green = 255 - degree * 3 blue = 0 green = 255 - degree * 3 blue = degree - 85 red = 0 green = 255 - degree * 3 blue = 0 degree = degree - 170 red = degree * 3 blue = 255 - degree * 3 return red, green, blue while True: for i in range(360): red = gree, blue while True: for i in range(360):</pre>		(+)(1	;)(±)(⇔)(⊜)()(≁)(⊕)(Q)((し)(()(())			
<pre>Nume in a start from from from from from from monor in a from the from monor in the from from from from from from from from</pre>	Mode	New Los	d Save Flash Files REPI Plotter Zoom-in Zoom-out T	heme Check Help Quit			
<pre>from microbit import * def map(value, fromLow, fromHigh, toLow, toHigh): return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow def HSL_RGB(degree): degree=degree/360*255 if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 for in range(360): red.green,blue=HSL_RGB(1) red.green</pre>	ColorfulLigh	nt. py 🗙	a Save Flash Flass Abl Hottel 200m in 200m out 1	neme i check help duit			
<pre>def map(value, fromLow, fromHigh, toLow, toHigh): return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow def HSL_RGB(degree): degree=degree/360*2255 if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = 0 elif edgree < 170: degree = degree - 85 red = edgree * 3 blue = degree * 3 blue = degree * 3 green = 255 - degree * 3 green = 255 - degree * 3 green = 255 - degree * 3 blue = degree * 3 green = 255 - degree * 3 blue = degree * 3 green = 0 green = 0 blue = 255 - degree * 3 return red, green, blue while True: for i in range(360): red, green, blue=HSL_RGB(i) red=map((red, 0, 255, 1023, 0) green=map(Bue, 0, 255, 1023, 0) green=map(Bue, 0, 255, 1023, 0) pin2.write_analog(red) pin1.write_analog(green) </pre>	1 f	rom micro	bit import *				
<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow def HSL_RGB(degree): degree=degree/360*2255 if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 green = 255 - degree * 3 green = 255 - degree * 3 green = 255 - degree * 3 blue = degree * 3 green = 255 - degree * 3 green = 255 - degree * 3 green = 0 green = 0 green = 0 blue = 255 - degree * 3 red = degree * 3 green = 0 blue = 255 - degree * 3 red = neturn red,green,blue while True: for i in range(360): red,green,blue=HSL_RGB(i) red=map(red,0,255,1023,0) green=map(Bue,0,255,1023,0) blue=map(blue,0,255,1023,0) pin2.write_analog(red) pin1.write_analog(green) </pre>	2 d	ef map(va	lue,fromLow,fromHigh,toLow,toHigh):				
<pre>4 def HSL_RGB(degree): 5 degree=degree/360*255 6 if degree < 85: 7 red = 255 - degree * 3 8 green = degree * 3 9 blue = 0 10 elif degree < 170: 11 degree = degree - 85 12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(green)</pre>	3	return	(toHigh-toLow)*(value-fromLow) / (fromHigh-from	ıLow) + toLow			
<pre>degree=degree/360*255 if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 else: degree = degree - 170 red = degree * 3 else: degree = degree * 3 green = 0 blue = 255 - degree * 3 return red,green,blue while True: for i in range(360): red,green,blue=HSL_RGB(i) red=map(red,0,255,1023,0) green=map(green,0,255,1023,0) blue=map(blue,0,255,1023,0) pin2.write_analog(red) pin1.write_analog(green)</pre>	4 d	ef HSL_RG	B(degree):				
<pre>if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 blue = degree * 3 else: degree = degree - 170 red = degree * 3 green = 0 blue = 255 - degree * 3 return red,green,blue while True: for i in range(360): red,green,blue while True: for i in range(360): red,green,blue while True: for i in range(360):</pre>	5	degree	=degree/360*255				
<pre>red = 255 - degree * 3 green = degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 le lse: degree = degree - 170 red = degree * 3 green = 0 blue = 255 - degree * 3 return red,green,blue while True: for i in range(360): red,green,blue=HSL_RGB(i) red=map(red,0,255,1023,0) green=map(green,0,255,1023,0) blue=map(blue,0,255,1023,0) pin2.write_analog(red) pin1.write_analog(green)</pre>	6	if deg	ree < 85:				
<pre>green = degree * 3 blue = 0 letif degree < 170: letif degree < 170: letif degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 letif else: letif degree = degree - 170 red = degree * 3 green = 0 blue = 255 - degree * 3 letif green = 0 blue = 255 - degree * 3 letif rue: for i in range(360): red,green,blue=HSL_RGB(i) red,green,blue=HSL_RGB(i) red,greenmap(green,0,255,1023,0) greenmap(green,0,255,1023,0) blue=map(blue,0,255,1023,0) letif prin2.write_analog(red) pin1.write_analog(green)</pre>	7	re	d = 255 - degree * 3				
<pre>9 blue = 0 10 elif degree < 170: 11 degree = degree - 85 12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(1) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)</pre>	8	gr	een = degree * 3				
<pre>elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 else: degree = degree - 170 red = degree * 3 green = 0 blue = 255 - degree * 3 return red,green,blue while True: for i in range(360): red,green,blue=HSL_RGB(1) red=map(red,0,255,1023,0) green=map(green,0,255,1023,0) blue=map(blue,0,255,1023,0) pin2.write_analog(red) pin1.write_analog(green)</pre>	9	bl	ue = 0				
11 degree = degree - 85 12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 for i in range(360): 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	10	elif d	egree < 170:				
12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	11	degree = degree - 85					
<pre>13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)</pre>	12	red = 0					
14 blue = degree * 3 15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	13	gr	een = 255 - degree * 3				
15 else: 16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	14	bl	ue = degree * 3				
16 degree = degree - 170 17 red = degree * 3 18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	15	else:					
<pre>17</pre>	16	de	gree = degree - 170				
18 green = 0 19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	17	re	d = degree * 3				
19 blue = 255 - degree * 3 20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	18	gr	een = 0				
20 return red,green,blue 21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	19	bli	ue = 255 - degree * 3				
21 while True: 22 for i in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	20	<pre>return red,green,blue</pre>					
22 Tor 1 in range(360): 23 red,green,blue=HSL_RGB(i) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	21 W	nile True					
23 red,green,btue=HSL_KGB(1) 24 red=map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	22	TOP 1	n range(360):				
24 red_map(red,0,255,1023,0) 25 green=map(green,0,255,1023,0) 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	23	re	d_green,blue=HSL_KGB(1)				
25 35 36 26 blue=map(blue,0,255,1023,0) 27 pin2.write_analog(red) 28 pin1.write_analog(green)	24	rei	u = map(red, 0, 255, 1023, 0)				
<pre>20 pin2.write_analog(red) 28 pin1.write_analog(green)</pre>	25	$g_1 = -map(g_1 = e_1, 0, 255, 1025, 0)$					
28 pin1.write_analog(green)	20	pi.	n^2 write applog(red)				
print with the and tog (green)	20	pi ni	n1 write analog(green)				
20 pin0 write analog(blue)	20	pine write analog(green) pine write analog(blue)					
30 sleep(10)	30	sl	eep(10)				

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into the microbit, and RGBLED will emit different colors. (<u>How to download?</u>)

90	Chapter	7	RGB	LED
----	---------	---	-----	-----

The following is the program code:

1	<pre>from microbit import *</pre>		
2	<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>		
3	<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow</pre>		
4	<pre>def HSL_RGB(degree):</pre>		
5	degree=degree/360*255		
6	if degree < 85:		
7	red = 255 - degree * 3		
8	green = degree * 3		
9	blue = 0		
10	elif degree < 170:		
11	degree = degree - 85		
12	red = 0		
13	green = 255 - degree * 3		
14	blue = degree * 3		
15	else:		
16	degree = degree - 170		
17	red = degree * 3		
18	green = 0		
19	blue = 255 - degree * 3		
20	return red, green, blue		
21	while True:		
22	for i in range(360):		
23	red,green,blue=HSL_RGB(i)		
24	red=map(red, 0, 255, 1023, 0)		
25	green=map(green, 0, 255, 1023, 0)		
26	blue=map(blue, 0, 255, 1023, 0)		
27	<pre>pin2.write_analog(red)</pre>		
28	<pre>pin1.write_analog(green)</pre>		
29	pinO.write_analog(blue)		
30	sleep(10)		

The map() function is used to convert a value in one range to another range.

<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>
<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow</pre>

The HSL_RGB() function is used to convert the HSL color system to RGB color, and return the RGB value corresponding to the current hue angle.

```
def HSL_RGB (degree):
    degree=degree/360*255
    if degree < 85:
        red = 255 - degree * 3
        green = degree * 3
        blue = 0
    elif degree < 170:
        degree = degree - 85
        red = 0
        green = 255 - degree * 3
        blue = degree * 3
    else:
        degree = degree - 170
        red = degree * 3
        green = 0
        blue = 255 - degree * 3
    return red, green, blue
```

Repeat 360 times, display the hue angle color corresponding to 0 to 360 degrees, and replace it every 10ms.

while True: for i in range(360): red, green, blue=HSL_RGB(i) red=map(red, 0, 255, 1023, 0) green=map(green, 0, 255, 1023, 0) blue=map(blue, 0, 255, 1023, 0) pin2. write_analog(red) pin1. write_analog(green) pin0. write_analog(blue) sleep(10)

Reference

HSL_RGB(degree)

Custom function, used to convert HSL color system to RGB color system, return the RGB value corresponding to the current hue angle, for example: HSL_RGB(0), return red RGB value: red=255, green=0, blue=0.

Chapter 8 Neopixel

In this chapter, we will learn Freenove 8 RGB LED Module

Project 8.1 Rainbow Water Light

This project will achieve rainbow water light.

Component list

Component knowledge

Freenove 8 RGB LED Module

The Freenove 8 RGB LED Module is as below. You can use only one data pin to control the eight LEDs on the module. As shown below:

And you can also control many modules at the same time. Just connect OUT pin of one module to IN pin of another module. In such way, you can use one data pin to control 8, 16, 32 ... LEDs.

Pin description:

(IN)			(OUT)		
symbol	Function	symbol	Function		
S	Input control signal	S	Output control signal		
V	Power supply pin, +3.5V~5.5V	V	Power supply pin, +3.5V~5.5V		
G	GND	G	GND		

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File typePathFile name				
HEX file/Projects/BlockCode/08.1_Neopixel Neopixel.hex				
After import sussessfully, the ends is shown as helper.				

After import successfully, the code is shown as below:

Search Q	on start	
Basic	set strip v to NeoPixel at pin P0 v with 8 leds as RGB (GRB format) v	
O Input		
O Music	forever the state of the state	
Led	for 13 from 8 to 350	
Radio		
C Loops	do	
🗙 Logic	strip v set pixel color at jv to hue iv +v jv Xv 45 saturation 100 luminosity	50
Uariables		
🖽 Math	strip V show	
Neopixel		
-		

Check the connection of the circuit and verify it correct, download the code into the micro:bit, and then you can see the rainbow water light.

Set the number of data pins and LEDs at "on start", as well as the type of LED.

set	strip 🔹	to	NeoPixel at pin	P0 🔻	with	8	leds as	RGB (GRB format) ▼

In the 0-360 for loop, the hue difference between each two LEDs is 45. When the hue changes, each LED succeeds the hue of the previous LED. And then the program converts the HSL color system to the RGB color system, returns the RGB value corresponding to the current hue angle and write the value to LED to achieve the effect of the rainbow water light.

Reference

Block	Function
NeoPixel at pin P0 • with 24 leds as RGB (GRB format) •	Set the number of data pins and LEDs, as well as the type of LED.
strip ▼ set pixel color at 0 to red ▼	Set LED color
strip - show	Turn on LED

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name				
Python file /Projects/PythonCode/08.1_Neopixel Neopixel.py				
After loading successfully, the code is shown as below:				

After loading successfully, the code is shown as below:

🕜 Mu 1.0.2	-	neopixel.py
------------	---	-------------

<pre>Mode text of the second state of the seco</pre>	U Mu I	портану спри портани по
Mode New Load Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Check Help Quit neopixel.py import neopixel im	C	
<pre>reepixel.py from microbit import * import neopixel np = neopixel.NeoPixel(pin0, 8) def HSL_RGB(degree): degree=degree/360*255 if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 elif degree * 3 blue = degree * 3 degree = degree * 3 degree</pre>	Mode	New Load Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Check Help Quit
<pre>import microbit import * import neopixel np = neopixel.NeoPixel(pin0, 8) def HSL_RGB(degree): degree=degree/360*255 if degree < 85: r</pre>	neopixel.	py X
<pre>import neopixel np = neopixel.NeoPixel(pin0, 8) def HSL_RGB(degree): degree=degree/360*255 if degree < 85: r</pre>	1	from microbit import *
<pre>np = neopixel.NeoPixel(pin0, 8) def HSL_RGB(degree): degree=degree/360*255 if degree < 85: r</pre>	2	import neopixel
<pre>4 def HSL_RGB(degree): 5</pre>	3	np = neopixel.NeoPixel(pin0, 8)
<pre>degree=degree/360*255 if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 else: degree = degree - 170</pre>	4	def HSL_RGB(degree):
<pre>if degree < 85: red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 blue = degree = 170</pre>	5	degree=degree/360*255
<pre>red = 255 - degree * 3 green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 blue = degree * 3 degree = degree - 170</pre>	6	if degree < 85:
<pre>s green = degree * 3 blue = 0 elif degree < 170: degree = degree - 85 red = 0 green = 255 - degree * 3 blue = degree * 3 blue = degree * 3 else: degree = degree - 170</pre>	7	red = 255 - degree * 3
<pre>9 blue = 0 10 elif degree < 170: 11 degree = degree - 85 12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170</pre>	8	green = degree * 3
10 elif degree < 170: 11 degree = degree - 85 12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170	9	blue = 0
11 degree = degree - 85 12 red = 0 13 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170	10	elif degree < 170:
<pre>12</pre>	11	degree = degree - 85
<pre>12 green = 255 - degree * 3 14 blue = degree * 3 15 else: 16 degree = degree - 170</pre>	12	red = 0
14 blue = degree * 3 15 else: 16 degree = degree - 170	13	green = 255 - degree * 3
15 else: 16 degree = degree - 170	14	blue = degree * 3
degree = degree - 170	15	else:
	16	degree - degree - 170
red = degree * 3	17	red = degree * 3
15 green = 0	18	green = 0
19 blue = 255 - degree * 3	19	blue = 255 - degree * 3
<pre>20 return int(red),int(green),int(blue)</pre>	20	<pre>return int(red),int(green),int(blue)</pre>
21 while True:	21	while True:
<pre>22 for value in range(0,360,5):</pre>	22	for value in range(0,360,5):
22 for i in range(8):	23	for i in range(8):
24 value=value+i*45	24	value=value+i*45
25 if value > 360 :	25	if value > 360 :
26 value = value-360	26	value = value-360
27 red, green, blue=HSL_RGB(value)	27	red,green,blue=HSL_RGB(value)
25 np[]] = (red,green,blue)	28	np[1] = (red,green,blue)
29	29	
30 np.show()	30	np.show()

Check the connection of the circuit, confirm that the connection of the circuit is correct, download the code into the micro:bit, and then you can see the rainbow water light. (How to download?)

The following is the code:

1	<pre>from microbit import *</pre>
2	<pre>import neopixel</pre>
3	<pre>np = neopixel.NeoPixel(pin0, 8)</pre>
4	<pre>def HSL_RGB(degree):</pre>
5	degree=degree/360*255
6	if degree < 85:
7	red = 255 - degree * 3
8	green = degree * 3
9	blue = 0
10	elif degree < 170:
11	degree = degree - 85
12	red = 0
13	green = 255 - degree * 3
14	blue = degree * 3
15	else:
16	degree = degree - 170
17	red = degree * 3
18	green = 0
19	blue = 255 - degree * 3
20	<pre>return int(red), int(green), int(blue)</pre>
21	while True:
22	for value in range(0, 360, 5):
23	for i in range(8):
24	value=value+i*45
25	if value > 360 :
26	value = value-360
27	red,green,blue=HSL_RGB(value)
28	np[i] = (red, green, blue)
29	np. show()

Set the number of data pins and LEDs.

= neopixel.NeoPixel(pin0, 8)

Custom HSL_RGB() function is used to convert HSL color to RGB color, returning the RGB value corresponding to the current hue angle.

In the 0-360 for loop, the hue difference between each two LEDs is 45. When the hue changes, each LED succeeds the hue of the previous LED. And then the program converts the HSL color system to the RGB color system, returns the RGB value corresponding to the current hue angle, and writes the value to LED to achieve the effect of the rainbow water light.

```
while True:
    for value in range(0, 360, 5):
        for i in range(8):
            value=value+i*45
            if value > 360 :
                value = value-360
            red, green, blue=HSL_RGB(value)
            np[i] = (red, green, blue)
        np. show()
```

Reference

neopixel.NeoPixel(pin, n)				
Initialize a new strip of n number of neopixel LEDs controlled via pin pin.				
show()				
Show the pixels. Must be called for any updates to become visible.				
np[i]				
Set pixels by indexing them (like with a Python list).				

Chapter 9 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. There are two kinds of buzzer: active buzzer and passive buzzer.

Component knowledge

Transistor

A transistor is required in this project due to the buzzer's current being so great that GPIO of RPi's output capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to amplify the current.

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a transistor as an electronic "amplifying or switching device". Transistors can be used to amplify weak signals, or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When there is current passing between "be" then "ce" will have a several-fold current increase (transistor magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation region and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers output current capacity is very weak, we will use a transistor to amplify its current in order to drive components requiring higher current.

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer $1 \bigoplus_{1} 2 \bigoplus_{2} + \frac{1}{2} \bigoplus_{1} 1 \bigoplus_{1} 2 \bigoplus_{2} + \frac{1}{2} \bigoplus_{1} 1 \bigoplus_{1} 2 \bigoplus_{2} + \frac{1}{2} \bigoplus_{1} 1 \bigoplus_{1} 2 \bigoplus_{1$

(A white label is attached on the active buzzer)

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive buzzer is the loudest when its resonant frequency is 2kHz.

Buzzer requires large current when it works. But generally, microcontroller port cannot provide enough current for that. In order to control buzzer through micro:bit, a transistor can be used to drive a buzzer indirectly.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds. If GPIO outputs low level, no current will flow through R1, the transistor will not conduct current and buzzer will remain silent (no sounds).

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level, current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent (no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer.

How to identify active and passive buzzer?

1. As a rule, there is a label on an active buzzer covering the hole where sound is emitted, but there are exceptions to this rule.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating (and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see the circuit board, coils, and a permanent magnet (all or any combination of these components depending on the model.

Active buzzer bottom

Passive buzzer bottom

Project 9.1 Active Buzzer

In this project, we will use an active buzzer to play a fixed melody.

Component list

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

Check the connection of the circuit, download the code into the micro:bit, and the buzzer on the breadboard will make sounds.

In the for loop, P0 outputs a high level to make the buzzer sounds, then delay 100ms. And then P0 outputs a low level to stop the buzzer. Then delay 100ms. After the loop ends, delay 500ms.

Python code

Open the .py file with Mu. Code, the path is as below:

F	ile type	Path	File name
Р	ython file	/Projects/PythonCode/09.1_ActiveBuzzer	ActiveBuzzer.py
After Ic	oad successfu	lly, the code is shown as below:	
Mode Active Buz	New Loa	d Save Flash Files REPL Plotter Coom-in Zoom-out	Theme Check Help Quit
1	from microl	pit import *	
2	while True		
3	for i	in range(4):	
4	pi	n0.write_digital(1)	
5	sle	eep(100)	
6	piı	n0.write_digital(0)	
7	sle	eep(100)	
8	sleep(!	500)	

Check the connection of the circuit, download the code into the micro:bit, and the buzzer on the breadboard will sound.

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	for i in range(4):
4	pinO.write_digital(1)
5	sleep(100)
6	pinO.write_digital(0)
7	sleep(100)
8	sleep(500)

In the for loop, P0 outputs a high level to make the buzzer sound, then delay 100ms. And then P0 outputs a low level to stop the buzzer. Then delay 100ms. After the loop ends, delay 500ms.

1	while True:
2	for i in range(4):
3	pin0.write_digital(1)
4	sleep(100)
5	pinO.write_digital(0)
6	sleep(100)
7	sleep(500)

Project 9.2 Happy Birthday Melody

In this project, we will make a passive buzzer to play a happy birthday melody.

Component list

Circuit

support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type		Path						File	name
HEX file	/Proje	ects/BlockCode/09.2	_Play-a	a-melo	ody		Pla	ay-a-r	nelody.hex
After importing suc	cessfully, the code	e is shown as below	:						
Search	Q	on start							
📕 Basic		start melody	birt	hday 🖣) re	peati	ng o	nce 🔻	
 Input 				+	+	+	+	+	+
🞧 Music		forever							
🖸 Led									

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into the micro:bit, and the buzzer on the breadboard will play a song "happy birthday".

You can click on the small triangle next to "birthday" to expand the list, select other melody, and select the number of times to play by clicking on the small triangle next to "once".

Reference

Block	Function
start melody dadadum ▼ repeating once ▼	Begin playing a musical melody through pin P0 of the micro:bit. There are built-in melodies that you can choose from the start melody block. These are already composed for you and are easy to use by just selecting the one you want.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name				
Python file	/Projects/PythonCode/09.2_Play-a-melody	Play-a-melody.py				
After loading succes	sfully, the code is shown as below:					
🕐 Mu 1.0.2 - play a melody.py						
Mode New Loa	Image: Mode Imag					
play a melody. py 🗶						
1 from microb	1 from microbit import *					
2 import mus	2 import music					
3 music.play	(MUSIC.BIRIHDAY)					
Check the connection	on of the circuit, confirm that the circuit is connected cou	rrectly, and download the code				

Check the connection of the circuit, confirm that the circuit is connected correctly, and download the code into the micro:bit, and the buzzer on the breadboard will play a song "happy birthday". (How to download?)

The following is the program code:

<pre>2 import music 3 music.play(music.BIRTHDAY)</pre>	1	<pre>from microbit import *</pre>
3 music.play(music.BIRTHDAY)	2	<pre>import music</pre>
	3	music.play(music.BIRTHDAY)

Reference

music.play()			
It is used to play music. MicroPython has quite a lot of built-in melodies.			
For more information, please refer to:			
https://microbit-micropy	https://microbit-micropython.readthedocs.io/en/latest/tutorials/music.html		

Project 9.3 Custom Melody

In this project, we will make the passive buzzer play a custom melody.

Component list

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import pro	<u>ject</u>)						
File type		Path			File	e name	
HEX file	/Projects/Bloo	ckCode/09.3_Play-a	a-custom-melody	Р	Play-a-custom-melody.hex		
After importing suc	cessfully, the co	de is shown as belo [,]	W:				
Search	Q	on start	+ +				
Basic			array of				
💿 Input			" C4:4"				
			" D4:4"				
C Led			" C4:4"				
Radio			" C4:4"				
C Loops			"D4:4"				
		set 🛛 tune 🝷	to "C4:4"				
			" E4:4"				
			"F4:4"				
i Math			"G4:8"				
🗸 🖌 Advand	ced		" E4:4"				
			"G4:8"				
			$\odot \odot$	+	+ +		
		start melody	tune 🔹 repeat	ing o	once 🔻		

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into the micro:bit, and the buzzer on the breadboard will play a custom melody.

The tune array holds a custom melody, and each element in the array contains notes and beats. For example, "A1:4" refers to the note named A in octave number 1 to be played for a duration of 4.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name			
Python file	/Projects/PythonCode/09.3_Play-a-custom-melody	Play-a-custom-melody.py			
After loading succes	ssfully, the code is shown as below:				
🕐 Mu 1.0.2 - play_a_custom_m	ielody.py				
Mode New Loa	Image: Node Image: Node				
1 from micro	bit import *				
2 import mus	ic				
3 tune = ["C	4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4",	"E4:4", "C4:4",			
4 "E	4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]				
₅ music.play	(tune)				

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into the micro:bit, and the buzzer on the breadboard will play a custom song.

The tune array holds a custom melody, and each element in the array contains notes and beats. For example, "A1:4" refers to the note named A in octave number 1 to be played for a duration of 4.

The following is the program code:

Chapter 10 Serial Communication

In this chapter, we will learn how to use serial port.

Project 10.1 Display the Data

This project uses serial ports to transmit data and display data.

Component list

Circuit

Connect micro:bit and PC via a micro USB cable.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

File type	Path	File name
HEX file	/Projects/BlockCode/10.1_SerialPort	SerialPort.hex
A.C. 1		

After importing successfully, the code is shown as below:

Search	Q	forever + + + + +
Basic		serial write value "Counter" = number -
⊙ Input		change number x by 1 + + + +
G Music		
Led		pause (ms) 1000 •
Radio		

Check the connection of the circuit and verify it correct download the code into the micro:bit, and then open the serial controller, as shown below:

III Show console Simulator
III Show console Device

On the serial console, you can see the data sent by the microbit.

		168.00
151		
Counter: 108		109.00
Counter:162		^
Counter:163		
Counter:164		
Counter:165		
Counter:166		
Counter:167		
Counter:168		•

Every 1 second, the value of the variable number is incremented by 1, and the new value will be sent to the serial port.

Reference

Block	Function
serial write value "x" = 0	Write a name:value pair and a newline character (\r\n) to the serial port.
change status • by 1	The change blocks increase the value in the variable by the amount you want. This is also known as an addition assignment operation.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/10.1_SerialPort	SerialPort.py
After loading succe	ssfully, the code is shown as below:	
🕜 Mu 1.0.2 - SerialPort.py		- 🗆 X
Mode New Lo	ad Save Files REPL Plotter Com-in Zoom-out Theme	Check Help Quit
1 from micro	bit import *	
2 import uti	me	
₃ number=0		
4 while True	:	
₅ uart.w	rite('Counter: '+str(number)+"\r\n")	
6 sleep(1000)	
7 number	=number+1	

Check the connection of the circuit and verify it correct and then download the code into the micro:bit.

P Mu 1.0.2 - SerialPort.py × ð o Ð Q C ሪ ? ÷ Flash Files REPL Mode Save Plotter Zoom-in Zoom-out Theme Check Help New Load Quit SerialPort.py 🗙 1 from microbit import * import utime 2 number=0 3 4 while True: uart.write('Counter: '+str(number)+"\r\n") 5 sleep(1000) 6 number=number+1 7

After the program is downloaded, click on REPL as shown below.

Then press the reset button (the button on the back) of the Micro:bit and we will see the change of value.

Port.py

	- 17
	Image: Save Imag
Serial_Fort.py	
1 T	om micropit import *
2 1 m	port utime
з <mark>nu</mark>	mber=0
4 wh	ile True:
5	uart.write('Counter: '+str(number)+"\r\n")
6	sleep(1000)
7	number=number+1
BBC micro:bit	REPL
Counter:	1
Counter:	2
Counter:	3
Counter:	4
Counter:	5
Counter:	6
Counter:	7
Counter:	8
Counter:	9
Counter:	10
Counter:	11
Counter:	12

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>import utime</pre>
3	number=0
4	while True:
5	uart.write('Counter: '+str(number)+ " $\r\n"$)
6	sleep(1000)
7	number=number+1

Every 1 second, the value of the variable number is incremented by 1, and the new value will be sent to the serial port, where "rn" is the meaning of the newline.

```
uart.write('Counter: '+str(number)+ "\r\n")
sleep(1000)
number=number+1
```

Reference

uart.write(x)	
Write the buffer to the bus	it can be a bytes object or a string:
uart.write('hello world')	
uart.write(b'hello world')	
uart.write(bytes([1, 2, 3]))	
For more information, plea	se refer to:
https://microbit-micropyth	on.readthedocs.io/en/latest/uart.html

Chapter 11 Magnetometer

In this chapter, we will learn the micro:bit built-in magnetometer chip.

Project 11.1 Display Magnetometer Data

This project will print the data obtained from the magnetometer chip on the serial console.

Component list

Circuit

Connect micro:bit and PC via micro USB cable.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to impor	rt project)	
File type	Path	File name
HEX file	/Projects/BlockCode/11.1_DisplayMagnetometerData	DisplayMagnetometerData.hex
After importin	a successfully, the code is shown as below:	

After importing successfully, the code is shown as below:

Search	Q Î	forever + + + + +
Basic	- 1	set azimuth ▼ to compass heading (°)
⊙ Input	_	serial write number azimuth -
O Music	- 1	serial write line
Led		

Check the connection of the circuit and verify it correct, and then download the code into the micro:bit. After completing downloading, the magnetometer needs to be calibrated (calibration must be performed using the magnetometer program). Calibrating the magnetometer will cause the program to pause until the calibration is completed. Start the calibration process, a prompt will scroll on the LED matrix, which indicates that you need to rotate the micro:bit until all LEDs on the LED screen are illuminated, and then a smile is displayed which means the calibration is completed, as shown below:

Then open the serial console (<u>Open the Serial Port</u>), place the micro:bit horizontally on the desktop, and rotate the micro:bit (clockwise or counterclockwise) to see the angular offset read from the magnetometer chip. As shown below:

3 indicates the number of times of consecutive readings of the same value.

The angular offset is the angle between the directions of the micro:bit and the geographic North Pole, as shown in the following figure.

The angular offset read from the magnetometer chip is stored in the variable azimuth.

	set	azimuth 🔻	to	compass heading (°)
--	-----	-----------	----	---------------------

Then the value of the variable azimuth is printed on the serial port interface.

Reference

Block	Function
serial write line ""	Write a string to the serial port and start a new line of text by writing \r\n.
serial write number 0	Write a number to the serial port.
compass heading (°)	The micro:bit measures the compass heading from 0 to 359 degrees with its magnetometer chip. Different numbers mean north, east, south, and west.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/11.1_DisplayMagnetometerData	DisplayMagnetometerData.py
After loading succ	essfully, the code is shown as below:	
🕜 Mu 1.0.2 - DisplayMagne	tometerData.py	- 🗆 ×
Mode New D	save Save Flash Files REPL Plotter Com-in Zoom-out	Theme Check Help Quit
ı from micr	obit import *	
2 compass.c	alibrate()	
3 while Tru	e:	
4 azimu	th = compass.heading()	
5 uart.	write(str(azimuth)+"\r\n")	
6 sleep	(1000)	

After checking the connection of the circuit and verify it correct, download the code into micro:bit.

After downloading the program, click REPL, as shown below.

Then press the reset button of the Micro:bit, you need to calibrate the magnetometer (the calibration must be performed when downloading using the magnetometer program).

Calibrating the magnetometer will cause the program to pause until the calibration is complete. Start the calibration process, a prompt will scroll on the LED matrix, which indicates that you need to rotate the micro:bit until **all** LEDs on the LED screen are illuminated, and then a smile is displayed which means the calibration is completed, as shown below:

Place the micro:bit horizontally on the desktop, and rotate the micro:bit (clockwise or counterclockwise) to see the angular offset read from the magnetometer chip. As shown below:

🕜 Mu 1.0).2 - compass.py					
Mode	Image: New Load Image: Save Image: Save					
untitied	from microbit import *					
2	compass.calibrate()					
3	while True:					
4	azimuth = compass.heading()					
5	uart_write(str(azimuth)+"\r\n")					
6	sleep(1000)					
BBC micro	:bit REPL					
304						
304						
304						
302						
304						
304						
202						

The angular offset is the angle between the direction of the micro:bit and the geographic north pole, as shown in the following figure.

The following is the program code:

1	<pre>from microbit import *</pre>
2	compass.calibrate()
3	while True:
4	azimuth = compass.heading()
5	<pre>uart.write(str(azimuth)+"\r\n")</pre>
6	sleep(1000)

Magnetometer calibration.

compass.calibrate()

The angular offset read from the magnetometer chip is stored in the variable azimuth and then printed out every 1s through a serial port.

```
azimuth = compass.heading()
uart.write(str(azimuth)+"\r\n")
sleep(1000)
```

Reference

compass.calibrate()

Starts the calibration process. An instructive message will scroll on the LED matrix, which indicates that you need to rotate the micro:bit until all LEDs are illuminated.

compass.heading()

Gives the compass heading, calculated from the above readings, as an integer in the range from 0 to 360, representing the angle in degrees, clockwise, with north as 0.

Project 11.2 Electronic Compass

In this project, we will use micro:bit to make an electronic compass, displaying an arrow on the micro:bit, and the arrow always points to the geographic north pole.

Component list

Circuit

Connect micro:bit and PC via micro USB cable.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name		
HEX file	/Projects/BlockCode/11.2_ElectronicCompass	ElectronicCompass.hex		
After importing successfully, the code is shown as below:				

Search Q	forever
Basic	set azimuth ▼ to compass heading (°)
⊙ Input	if azimuth a 22.5 and a azimuth a 4 57.5 then
O Music	
C Led	show arrow North West
I Radio	else if azimuth • < • 112.5 and • azimuth • > • 67.5 then \bigcirc
C Loops	show arrow West -
🔀 Logic	
Variables	else if azimuth • • • 112.5 and • azimuth • • • 157.5 then •
🖽 Math	show arrow South West - A A A A A A A A A A A A A A A A A A
✓ Advanced	else if azimuth • < • 202.5 and • azimuth • > • 157.5 then Θ
	show arrow South -
	else if azimuth ▼ > ▼ 202.5 and ▼ azimuth ▼ < ▼ 247.5 then ⊖
	show arrow South East -
	else if azimuth ▼ < ▼ 292.5 and ▼ azimuth ▼ > ▼ 247.5 then ⊖
	show arrow East -
	else if azimuth ▼ > ▼ 292.5 and ▼ azimuth ▼ < ▼ 337.5 then ⊖
	show arrow North East
	else if azimuth • < • 22.5 or • azimuth • > • 337.5 then Θ
	show arrow North -

Check the connection of the circuit and verify it correct, and then download the code into the micro:bit. Calibrate the electronic compass. After the calibration is successful, place the micro:bit horizontally and turn the micro:bit to see that the arrow points to the geography Arctic.

The arrow will point to eight directions: northwest, west, southwest, south, southeast, east, northeast, north, each direction is 45 degrees apart. Assuming that the direction of the micro:bit is rotated 45 degrees from the north to the northeast of the geography, the arrow shown should be reversed, that is, it rotates

-45 degrees, pointing to the northwest of the micro:bit, which is the geographic north pole. Therefore, we can adjust the direction of the arrow according to its angular offset from the geographic North Pole.

When the variable azimuth is less than 22.5 or greater than 337.5, the arrow points to the due north of the micro:bit.

When the variable azimuth is greater than 22.5 or less than 67.5, the arrow points to the northwest of the micro:bit.

And so on in the same fashion, in every 45 degrees, the arrow points to a particular direction indicating the geographic north, as shown in the following illustration:

The angular offset read from the magnetometer chip is stored in the variable azimuth

set azimuth **v** to compass heading (°)

if azimuth • • 22.5 and • azimuth • < • 67.5 then
show arrow North West
else if azimuth • • 112.5 and • azimuth • • • 67.5 then Θ
show arrow West -
else if azimuth ▼ → ▼ 112.5 and ▼ azimuth ▼ < ▼ 157.5 then ⊖
show arrow South West -
else if azimuth ▼ < ▼ 202.5 and ▼ azimuth ▼ > ▼ 157.5 then ⊖
show arrow South -
else if azimuth ▼ > ▼ 202.5 and ▼ azimuth ▼ < ▼ 247.5 then ⊖
show arrow South East -
else if azimuth ▼ < ▼ 292.5 and ▼ azimuth ▼ > ▼ 247.5 then ⊙
show arrow East
else if azimuth ♥ > ▼ 292.5 and ▼ azimuth ▼ < ▼ 337.5 then ⊖
show arrow North East 🔻
else if azimuth ▼ < ▼ 22.5 or ▼ azimuth ▼ > ▼ 337.5 then ⊙
show arrow North -

Determine the value of the variable azimuth to change the direction of the arrow.

Reference

Block	Function
if true - then	Run code depending on whether a Boolean condition is true or false.
show arrow North -	Shows the selected arrow on the LED screen

support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

Open the .py me with Md. Code, the path is as below.										
F	ile type	Path					File name			
P	ython file	/Projects/PythonCode/11.2_ElectronicCompass					ElectronicCompass.py			
After lo	After loading successfully, the code is shown as below:									
🕜 Mu 1.0	0.2 - Electronic_Compa	ass.py								
Mode		d Save Flash	Files R	EPL Plotter	Zoom-in	Q Zoom-out	Theme	Check	? Help	Quit
Electroni	c_Compass.py 🗙									
1	from microl	oit import *								
2	compass.ca	librate()								
3	while True	:								
4	azimuth = compass.heading()									
5	if azir	muth<22.5 and	azimuth<6	7.5:						
6	dis	splay.show(Ima	ge.ARROW_I	NW)						
7	elif a	zimuth<67.5 an	d azimuth	<112.5:						
8	dis	splay.show(Ima	ge.ARROW_N	W)						
9	<pre>elif azimuth<112.5 and azimuth<157.5:</pre>									
10	dis	splay.show(Ima	ge.ARROW_	SW)						
11	elif azimuth<157.5 and azimuth<202.5:									
12	display.snow(Image.ARROW_S)									
13	eitr azimuthszez.5 and azimuthsz47.5:									
14	alif azimuth(247 5 and azimuth(292 5.									
10	display show(Image ARROW E)									
17	elif azimuth(292 5 and azimuth(337 5.									
18	display show(Image ARROW NE)									
19	elif $azimuth(22.5 \text{ or } azimuth)337.5$									
20	dis	splay.show(Ima	ge.ARROW_I	N)						

Check the connection of the circuit and verify it correct, download the code into the micro:bit and calibrate the electronic compass. After the calibration is successful, place the micro:bit horizontally and rotate the micro:bit to see that the arrow points to the geography Arctic.

The arrow will point to eight directions:: northwest, west, southwest, south, southeast, east, northeast, north, each direction is 45 degrees apart. Assuming that the direction of the micro:bit is rotated 45 degrees from the north to the northeast of the geography, the arrow shown should be reversed, that is, rotated -45 degrees, pointing to the northwest of the micro:bit, which is the geographic north pole. Therefore, the direction of the arrow is adjusted according to the angular offset from the geographic North Pole.

When the variable azimuth is less than 22.5 or greater than 337.5, the arrow points to the true north of the micro:bit.

When the variable azimuth is greater than 22.5 and less than 67.5, the arrow points to the northwest of the micro:bit.

And so on in the same fashion, in every 45 degrees, the arrow points to a particular direction indicating the geographic north, as shown in the following figure:

The following is the program code:

1	<pre>from microbit import *</pre>
2	compass.calibrate()
3	while True:
4	azimuth = compass.heading()
5	if azimuth<22.5 and azimuth<67.5:
6	display.show(Image.ARROW_NW)
7	elif azimuth<67.5 and azimuth<112.5:
8	display.show(Image.ARROW_W)
9	elif azimuth<112.5 and azimuth<157.5:
10	display.show(Image.ARROW_SW)
11	elif azimuth<157.5 and azimuth<202.5:
12	display.show(Image.ARROW_S)
13	elif azimuth<202.5 and azimuth<247.5:
14	display.show(Image.ARROW_SE)
15	elif azimuth<247.5 and azimuth<292.5:
16	display.show(Image.ARROW_E)
17	elif azimuth<292.5 and azimuth<337.5:
18	display.show(Image.ARROW_NE)
19	elif azimuth<22.5 and azimuth>337.5:
20	display.show(Image.ARROW_N)

Calibrate the electronic compass first and store the data on the variable azimuth.

compass.calibrate()
azimuth = compass.heading()

Determine the value of the variable azimuth and change the direction of the arrow.

if azimuth<22.5 and azimuth<67.5:
display.show(Image.ARROW_NW)
elif azimuth<67.5 and azimuth<112.5:
display.show(Image.ARROW_W)
elif azimuth<112.5 and azimuth<157.5:
display.show(Image.ARROW_SW)
elif azimuth<157.5 and azimuth<202.5:
display.show(Image.ARROW_S)
elif azimuth<202.5 and azimuth<247.5:
display.show(Image.ARROW_SE)
elif azimuth<247.5 and azimuth<292.5:
display.show(Image.ARROW_E)
elif azimuth<292.5 and azimuth<337.5:
display.show(Image.ARROW_NE)
elif azimuth<22.5 and azimuth>337.5:
display.show(Image.ARROW_N)

Chapter 12 Accelerometer

In this chapter, we will learn about the built-in accelerometer sensor of micro:bit.

Project 12.1 Display Accelerometer Data

In this project, we will obtain data from the accelerometer sensor and print it on the serial console.

Component list

Circuit

Connect micro:bit and PC via a micro USB cable.

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name		
HEX file	/Projects/BlockCode/12.1_DisplayAccelerometerData	DisplayAccelerometerData.hex		

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, download the code into the micro:bit, and then open the serial console, you can see the data of the accelerometer, as shown below:

Read the value of the accelerometer in three directions and print it out through the serial port every second.

Reference

Block	Function	
acceleration (mg) x 🔻	Get the acceleration value in one of three dimensions, or the combined value in all directions (x, y, and z).	

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/PythonCode/12.1_DisplayAccelerometerData	DisplayAccelerometerData.py
After loading suc	cessfully, the code is shown as below:	
🕐 Mu 1.0.2 - Display_data	.ру	
Mode New Display_data.py	Load Save Flash Files REFL Plotter Com-in Com-out	Theme Check Help Quit
1 from mic	robit import *	
2 while Tr	ue:	
₃ uart.	write(str(accelerometer.get_values())+"\r\n")	
4 sleep	(1000)	

Check the connection of the circuit and verify it correct, and then download the code into the micro:bit.

After the program is downloaded, open the plotter (Plotter), click on the REPL, you can see the x-axis, y-axis, z-axis data collected by the accelerometer, as shown below:

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	uart.write(str(accelerometer.get_values())+"\r\n")
4	sleep(1000)

Every 1 second, the accelerometer data will be obtained and printed through the serial port.

1	<pre>uart.write(str(accelerometer.get_values())+"\r\n")</pre>
2	sleep(1000)

Reference

accelerometer.get_values()

Get the acceleration measurements in all axes at once, as a three-element tuple of integers ordered as X, Y, Z. By default the accelerometer is configured with a range of +/- 2g, so X, Y, and Z will be within the range of +/-2000mg.

Project 12.2 Gradiometer

In this project, we will use the accelerometer to make a level instrument.

Component list

Circuit

Connect micro:bit and PC via a micro USB cable.

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import pro	<u>ect</u>)	
File type	Path	File name
HEX file	/Projects/BlockCode/12.2_Gradienter	Gradienter.hex
After importing suc	cessfully, the code is shown as below:	
Search	forever + + + + + +	+ + + + + + + +
Basic	set x_value ▼ to constrain rotation (°) roll ▼	between -30 and 30
O Input		
• Music	set y_value ♥ to constrain rotation (°) pitch ♥	between -30 and 30
C Led	set X • to round • map x_value • from low	-30 high 30 to low 0 high 4
I Radio	set Y - to round - map y_value - from low	-30 high 30 to low 0 high 4
C Loops		
🔀 Logic	clear screen	
📕 Variables	plot x X V Y V	
Math		

Check the connection of the circuit and verify it correct and download the code into micro:bit, you will observe that the LED dot matrix will change with the tilt of micro:bit.

Detect the flip angle of the microbit in the x-axis and the y-axis. The return value ranges from -180 to 180 degrees. This project does not require such a wide range of flip angles, so we just set it within -30 to 30 degrees.

set	x_value ▼	to	constrain	rotation (°)	roll 🔻	between	-30 and 30	
set	y_value ▼	to	constrain	rotation (°)	pitch 🔻	between	-30 and 30	

Since the LED screen is 5x5, map the range of -30-30 to the range of 0-4, and assign it to the X, Y variable.

set	x •	to	round 🔻	тар	x_value ▼	from low	-30 high	30	to low	0	high	4
set	Y 🕶	to	round 🔻	map	y_value 🔻	from low (-30 high	30	to low	0	high	4

Turn OFF all the LED first, then turn ON the corresponding LED according to the value of the X, Y variables.

Reference

Block	Function
rotation (°) pitch 🔻	Find how much the micro:bit is tilted in different directions.
plot x 0 y 0	Turn ON the LED you set on the LED screen.
round - 0	If a number has a fractional part, you can change the number to the nearest integer value.
map 0 from low 0 high 1023 to low 0 high 4	A map is a conversion of one span of numbers to another.
clear screen	Turn OFF all the LED lights on the LED screen.
constrain 0 between 0 and 0	Make sure that the value of the number you give is within the range.

Python code

Open the .py file with Mu. Code, the path is as below:

File	e type	Path	File name
Py	thon file	Gradienter.py	
After loa	ading succes	sfully, the code is shown as below:	
🕜 Mu 1.0.2	- Gradienter.py		- 🗆 X
Mode Gradienter. p	H Loa	d Save Flash Files REPL Plotter Com-in Com-out	Theme Check Help Quit
1 f	rom microl	bit import *	
2 d	ef mapping	g(value):	
3	if valu	ue < -400 :	
4	va	lue=-400	
5	elif va	alue > 400 :	
6	va	lue=400	
7	value=	(value+400)/200	
8	return	int(value)	
9 W	hile True	:	
10	value_	x = accelerometer.get_x()	
11	value_	y = accelerometer.get_y()	
12	x=mapp	ing(value_x)	
13	y=mapp	ing(value_y)	
14	displa	y.clear()	
15	displa	y.set_pixel(x, y, 9)	

Check the connection of the circuit and verify it correct, download the code into micro:bit, you will observe that the LED dot matrix will change with the tilt of micro:bit.

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>def mapping(value):</pre>
3	if value < -400 :
4	value=-400
5	elif value > 400 :
6	value=400
7	value=(value+400)/200
8	return int (value)
9	while True:
10	<pre>value_x = accelerometer.get_x()</pre>
11	<pre>value_y = accelerometer.get_y()</pre>
12	x=mapping(value_x)
13	y=mapping(value_y)
14	display.clear()
15	display.set_pixel(x, y, 9)

A custom mapping() function limits the input value to a range of -400 to 400 and maps to a range of 0-4.

```
def mapping(value):
    if value < -400 :
        value=-400
    elif value > 400 :
        value=400
    value=(value+400)/200
    return int(value)
```

Read the value of the accelerometer X, Y-axis direction. The return value range is -2000-2000. This project does not require such a wide range, So we set it to the range of -400to 400. Call the mapping() function to return the value ranging from 0-4, lighting the LED corresponding to the x row and the y column.

while True: value_x = accelerometer.get_x() value_y = accelerometer.get_y() x=mapping(value_x) y=mapping(value_y) display.clear()

display.set_pixel(x, y, 9)

Reference

display.clear()
Set the brightness of all LEDs to 0 (off).
display.set_pixel(x, y, 9)
Set the brightness value of the LED at column x and row y, which has to be an integer between 0 and 9.
accelerometer.get_x()
Get the acceleration measurement in the x axis, as a positive or negative integer, depending on the
direction. The measurement is given in milli-g. By default the accelerometer is configured with a range of
+/- 2g, and so this method will return a value within the range of +/- 2000mg
accelerometer.get_y()
Get the acceleration measurement in the y axis, as a positive or negative integer, depending on the

Get the acceleration measurement in the y axis, as a positive or negative integer, depending on the direction. The measurement is given in milli-g. By default the accelerometer is configured with a range of +/-2g, and so this method will return a value within the range of +/-2000mg.

Chapter 13 Potentiometer

In this chapter, we will learn a new component: potentiometer

Project 13.1 Potentiometer

This project enables a rotatary potentiometer to output different voltages.

Component list

Component knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary form consisting of 1s and 0s. The range of our ADC module is 10 bits, that means the resolution is $2^{10}=1024$, so that its range (at 3.3V) will be divided equally to 1024 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

Subsection 1: the analog in rang of 0V-3.3/1024V corresponds to digital 0; Subsection 2: the analog in rang of 3.3 /1024V-2*3.3/1024V corresponds to digital 1;

The resultant analog signal will be divided accordingly.

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact brush. When the brush moves along the resistor element, there will be a change in the resistance of the potentiometer's output side (3) (or change in the voltage of the circuit that is a part). The illustration below represents a linear sliding potentiometer and its electronic symbol on the right.

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is connected to the brush that makes contact with the resistive element. In our illustration, when the brush moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values between pin 1 and 3 and between pin 2 and 3 will be the same.

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of power. When you slide the brush "pin 3", you can get variable voltage within the range of the power supply.

Rotary potentiometer

Rotary potentiometers and linear potentiometers have the same function; the only difference being the physical action being a rotational rather than a sliding movement.

Circuit

1023

voltage <

ADC 🔻

=

=

3.3

Block code

Open MakeCode first. Import the .hex file. The path is as below:

set

(How to import project)

Input

Music

🖸 Led

... Radio

X Logic

Loops

<u></u>				
File type	Path	File name		
HEX file	/Projects/BlockCode/13.1_Potentiometer	Potentiometer.hex		
After importing suc	ccessfully, the code is shown as below:			
Search	Q forever + + + +			
Basic	set ADC ▼ to analog read pin P0 ▼	+ + +		

to

ADC 🔻

" voltage: "

convertValue

Check the connection of the circuit and verify it correct and then download the code into micro:bit.

1000 💌

voltage 🔻

serial write value

serial write value

pause (ms)

III Show console Simulator
III Show console Device

Click on the console device, rotate the potentiometer, you will see the output ADC value and voltage value.

voltage::2.6129032258064515 convertValue:1022 voltage::3.2967741935483867 convertValue:793 voltage::2.5580645161290318 convertValue:731 voltage::2.3580645161290321 Read the analog voltage value of the P0 pin, the range is 0-1023, and then convert the analog voltage value into a digital voltage value.

set	ADC 🔻	to	ana	log read pi	in P0	•		
set	voltag	e 🔻	to (ADC -	÷ 🔻	1023	x •	3.3

Print the analog voltage and digital voltage of P0 pin every 1 second.

serial write value ("convertValue") = ADC		
serial write value "voltage:" = voltage •		
pause (ms) 1000 💌	+ +	

Reference

Block	Function
analog read pin P0 🔻	Read an analog signal (0 to 1023) from the pin you set.)

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name							
Python file	/Projects/PythonCode/13.1_Potentiometer	Potentiometer.py							
After loading succe	After loading successfully, the code is shown as below:								
🕞 Mu 1.0.2 - Potentiometer.p	,	– 🗆 X							
Mode New Los	Image: Node Image: Node								
1 from micro	bit import *								
2 while True	:								
з ADC =	pin0.read_analog()								
4 voltag	e = ADC/1023*3.3								
5 print("convertvalue: "+str(ADC)+" voltage: "+str(vol	tage))							
6 sleep(1000)								

Check the connection of the circuit and confirm that the circuit is connected correctly. Download the code into the micro:bit. (How to download?)

Click on the REPL, press the micro:bit reset button, and then rotate the potentiometer. You can see the change in the value on the software Mu, as shown below.

🕐 Mu 1.0.2 - Potentiometer.py	– 🗆 X						
Image: Node Image: New Image: New </th <th>? U Quit</th>	? U Quit						
1 from microbit import *							
2 while True:							
3 ADC = pin0.read_analog()							
4 voltage = ADC/1023 \times 3.3							
<pre>print("convertualue: "+str(ADC)+" voltage: "+str(voltage))</pre>							
cloop(1000)							
steep(1000)							
convertialue: 1018 veltage: 2 28287							
convertigite. 1016 voltage. 3.2030							
convertvalue: 996 voltage: 3.2129							
convertvalue: 662 voltage: 2.13548							
convertvalue: 394 voltage: 1.27097							
convertvalue: 558 voltage: 1.8							
convertvalue: 674 voltage: 2.17419							

convertvalue: 698 voltage: 2.25161

The following is the program code:

1	from microbit import *
2	while True:
3	ADC = pin0.read_analog()
4	voltage = ADC/1023*3.3
5	<pre>print("convertvalue: "+str(ADC)+" voltage: "+str(voltage))</pre>
6	sleep(1000)

Read the analog voltage value of the P0 pin, the range is 0-1023, and then convert the analog voltage value into a digital voltage value.

ADC = pin0. read_analog()	
voltage = ADC/1023*3.3	

Print the analog voltage and digital voltage of P0 pin every 1 second.

```
print("convertvalue: "+str(ADC)+" voltage: "+str(voltage))
sleep(1000)
```

Reference

read_analog()					
Read an analog signal (0 to	Read an analog signal (0 to 1023) from the pin you set.				
print()					
Print() is a Python built-in function for printing.					

Chapter 14 Potentiometer and LED

This chapter is a comprehensive application of potentiometer and LED.

Project 14.1 Soft Light

In this project, we will make an LED with adjustable brightness.

Component list

Circuit

In this circuit, the port 1 and 2 of the potentiometer are respectively connected to the two ends of the power supply, and the port3 is connected to the P0 pin of the micro:bit.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import p	project)							
File type	Path	File name						
HEX file	/Projects/BlockCode/14.1_SoftLight	SoftLight.hex						
After importing successfully, the code is shown as below:								

	Search	Q	forever							
	Basic		analog write pin	P1 ▼	to	anal	og re	ad pin	PØ	
	 Input 			+	+	+	+	+	+	+
l	• Music		+ + + +							

Check the connection of the circuit, verify it correct, download the code into the micro:bit, and rotate the potentiometer to see the change of the brightness.

Read the analog voltage value of the P0 pin, then the P1 pin outputs the same analog voltage value.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name				
Python file	/Projects/PythonCode/14.1_SoftLight SoftLight.py					
After load successfu	After load successfully, the code is shown as below:					
🕜 Mu 1.0.2 - SoftLight.py		– 🗆 ×				
Mode New Load	Image: Mode Image: Market Safe Safe Safe Safe Safe Safe Safe Safe					
1 from microb	pit import *					
2 while True:	2 while True:					
3 pin1.wr	<pre>pin1.write_analog(pin0.read_analog())</pre>					
Check the connection of the circuit, verify it correct, download the code into the micro:bit, and rotate the						
potentiometer to see the change of the brightness of the LED.						
The following is the	The following is the program code:					
1 from microb	it import *					

1	from microbit import *
2	while True:
3	<pre>pin1.write_analog(pin0.read_analog())</pre>

Read the analog voltage value of the P0 pin, then the P1 pin outputs the same analog voltage value.

pin1.write_analog(pin0.read_analog())

Project 14.2 Multicolored Soft Light

In this project, we control the color of the RGBLED with a potentiometer.

Component list

Circuit

support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project) File type Path File name **HEX file** ../Projects/BlockCode/14.2_ColorfulSoftLight ColorfulSoftLight.hex After importing successfully, the code is shown as below: Search... Q forever Basic to map analog read pin P3 •) from low 0 high 1023 to low 0 high 360 set Input saturation 100 luminosity 50 value 🔻 set hue RGBColo Music Led of RGBColor 255 set Radio RGBColor ▼)÷ 65535 255 set ainder of C Loops 65535 red RGBColor set 🗴 Logic from low 0 high 255 to low 1023 high 0 Variables set blue 🔻 blue map Ħ Math green 🔻 from low 0 high 255 to low 1023 high 0 set to Neopixel from low 0 high 255 to low 1023 high 0 set red 💌 Advanced analog to blue **•** analog analog write pin red

Download the code into micro:bit, rotate the potentiometer, you can see that the color of the RGBLED is changing.

Read the potentiometer's analog voltage and map the potentiometer's analog voltage ranging 0-1023 to the hue angle ranging 0-360.

Convert the HSL color system to the RGB color system, return the RGB value corresponding to the current hue angle, and store the value in the variable RGBColor.

set	RGBColor 🔻	to	hue	value 🔻	saturation	100	luminosity	50	
-----	------------	----	-----	---------	------------	-----	------------	----	--

The value of the lower eight-bit blue channel of the variable RGBColor is assigned to the variable blue, the value of the middle eight-bit green channel is assigned to the variable green, and the value of the upper eight-bit red channel is assigned to the variable red.

set	blue 🔻 to	remainder of RGBColor ▼ ÷ 255	+ +
set	green 🔻 to	remainder of RGBColor V ÷ 65535 ÷ V	255
set	red 🔻 to 🌘	RGBColor ▼ ÷ ▼ 65535	+ +

RGBLED is a common anode, so the pins are set to low to turn on the RGBLED. The values of the variables 'red', 'green', and 'blue' are converted from 0-255 to analog signal values in the range of 1023-0, and then reassigned to 'red', 'green', 'blue 'variable. In this kit, three LEDs of RGB LED share a common anode(+) and their negative pins need to be set to LOW level to turn ON the RGB LED work. And the value of variables 'red', 'green', and 'blue' need to be converted from the value ranging from 0-255 to analog signal values ranging from 1023-0, and then reassigned to them.

set	red 🔻 to	map red 🔻 from low 0 high 255 to low 1023 high 0
set	green 🔻 to	map green T from low 0 high 255 to low 1023 high 0
set	blue 🔻 to	map blue - from low 0 high 255 to low 1023 high 0

Write the analog voltage value of the red, green, and blue variables to the corresponding P0, P1, and P2 pins to change the LED color.

Python code

Open the py file with Mu. Code, the path is as below:

Fi	le typ)e	Path	File name
P	ython	file	/Projects/PythonCode/14.2_ColorfulSoftLight	ColorfulSoftLight.py
After I	oadin	g succ	essfully, the code is shown as below:	
🕐 Mu 1.	.0.2 - Cold	orfulSoftLie	aht.ov	– n ×
Mode			Load Save Files REPL Plotter Zoom-in Zoom-out	Theme Check Help Quit
ColorfulS	oftLight.	ру 🗙		
1	from	micr	obit import *	
2	disp	lay.o	ff()	
3	def	map(v	alue,fromLow,fromHigh,toLow,toHigh):	
4		retur	n (toHigh-toLow)*(value-fromLow) / (fromHigh-fro	omLow) + toLow
5	def	HSL_R	GB(degree):	
6		degre	e=degree/360*255	
7		nt de	gree < 85:	
8		r	ed = 255 - degree * 3	
9		g	reen = degree * 3	
10		D	tue = 0	
11		elit	degree < 170:	
12		u u	egree - degree - 85	
13		ſ	eq = 0	
14		ь В	1 = -255 = -4 = -255	
10		مادمن	tue - uegree × 5	
10		d	egree = degree - 170	
19		r	ed = degree + 3	
19		σ	reen = 0	
20		b	lue = 255 - degree * 3	
21		retur	n red,green,blue	
22	whil	e Tru	e:	
23		value	=map(pin3.read analog(),0,1023,0,360)	
24		red,g	reen,blue=HSL_RGB(value)	
25		red=m	ap(red,0,255,1023,0)	
26		green	=map(green,0,255,1023,0)	
27		blue=	map(blue,0,255,1023,0)	
28		pin2.	write_analog(red)	
29		pin1.	write_analog(green)	
30		pin0.	write_analog(blue)	

After checking the connection of the circuit, verify it correct, download the code into micro:bit. By rotating the potentiometer, you can see that the color of RGB LED is changing.

The following is the program code:

1	<pre>from microbit import *</pre>
2	display.off()
3	<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>
4	<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow</pre>
5	def HSL_RGB(degree):
6	degree=degree/360*255
7	if degree < 85:
8	red = 255 - degree * 3
9	green = degree * 3
10	blue = 0
11	elif degree < 170:
12	degree = degree - 85
13	red = 0
14	green = 255 - degree * 3
15	blue = degree * 3
16	else:
17	degree = degree - 170
18	red = degree * 3
19	green = 0
20	blue = 255 - degree * 3
21	return red, green, blue
22	while True:
23	value=map(pin3.read_analog(),0,1023,0,360)
24	red,green,blue=HSL_RGB(value)
25	<pre>print(red, green, blue)</pre>
26	red=map(red, 0, 255, 1023, 0)
27	green=map(green, 0, 255, 1023, 0)
28	blue=map(blue,0,255,1023,0)
29	pin2.write_analog(red)
30	<pre>pin1.write_analog(green)</pre>
31	pinO.write_analog(blue)
32	sleep(10)

Turn OFF the LED screen to use the P3 pin. A custom map() function converts values in one range of numbers to values in another range of numbers.

display.off()
<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>
return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

The custom function HSL_RGB() is used to convert the HSL color system to the RGB color system and return the RGB value corresponding to the current hue angle.

```
def HSL_RGB(degree):
    degree=degree/360*255
    if degree < 85:
        red = 255 - degree * 3
        green = degree * 3
        blue = 0
    elif degree < 170:
        degree = degree - 85
        red = 0
        green = 255 - degree * 3
        blue = degree * 3
    else:
        degree = degree - 170
        red = degree * 3
        green = 0
        blue = 255 - \text{degree} * 3
    return red, green, blue
```

Read the analog voltage value of the P3 pin and convert it to the corresponding hue angle. Call the HSL_RGB() function to return the RGB value corresponding to the current hue angle, and then write the corresponding RGB values to the P0, P1, and P2 pins to change the LED color.

```
while True:
    value=map(pin3.read_analog(),0,1023,0,360)
    red, green, blue=HSL_RGB(value)
    print(red, green, blue)
    red=map(red,0,255,1023,0)
    green=map(green,0,255,1023,0)
    blue=map(blue,0,255,1023,0)
    pin2.write_analog(red)
    pin1.write_analog(green)
    pin0.write_analog(blue)
    sleep(10)
```

Project 14.3 Rainbow Light

In this project, we use a potentiometer to control the RGB LED module.

Component list

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name					
HEX file	/Projects/BlockCode/14.3_RainbowLight	RainbowLight.hex					
A Gran from a strain of the st							

After importing successfully, the code is shown as below:

on start	+ +										
set strip ▼	to NeoPixel	at pin P0 ·	with 8	B leds as	RGB (GRI	B format) •					
	+ +										
forever	+ +	+ +	+ +	+ +	* *	+ +	+ +				
set val 💌 te	o map analog	g read pin	P1 • fro	om low 0	high 10	23 to low	N 0 high	h 360			
for k from do	n 0 to 7										
strip	set pixe	l color at	k 🔻 to (hue val	• + •	k 🔻	× • 45	saturati	on 100	luminosit	y 50
Strip V	+										

Check the connection of the circuit, verify it correct, download the code into the micro:bit, rotate the potentiometer, and the color ring of the RGB LED module also rotates.

Set the number of pins and LEDs for the RGB LED module, as well as the type of LED.

on sta	rt		+ +	+	+ +	+	+	+	+ +	÷	+ +	+	+				
set	strip ▼	to	NeoPixel	l at pi	n P0 🔻	with	8	leds as	RGB	(GRB	format)	•	+				
			+ +	+	+ +	+	+	+	+ +	÷	+ +	+	+				

Read the voltage of the potentiometer and map the analog value of 0-1023 to an angle of 0-360.

set val 🔻 to map analog read pin Pl 🗸 from low 0 high 1023 to low 0 high 360

In the for loop, the hue difference between each two LEDs is 45. When the hue changes, it ensures that the LED succeeds the hue of the previous LED. Then it converts the HSL color system to the RGB color system, and returns the RGB value corresponding to the angle, to make the LED to achieve the effect of the rainbow.

Python code

Open the .py file with Mu. Code, the path is as below:

F	ile type	Path	File name
F	Python file	/Projects/PythonCode/14.3_RainbowLight	RainbowLight.py
After I	oading succe	ssfully, the code is shown as below:	
A. 1			
miu I.	.0.2 - KainbowLight.py		
	(+)(1		
U.			
Mode	New Los	ad Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Che	ck Help Quit
1	from micro	bit import *	
2	import neo	pixel	
3	np = neopi	xel.NeoPixel(pin0, 8)	
4	def HSL_RG	B(degree):	
5	degree	=degree/360*255	
6	if deg	ree < 85:	
7	re	d = 255 - degree * 3	
8	gr	een = degree * 3	
9	DL	ue = 0	
10	elir d	egree < 170:	
11	re	d = 0	
13	gr	een = 255 - degree * 3	
14	bl	ue = degree + 3	
15	else:	0	
16	de	gree = degree - 170	
17	re	d = degree * 3	
18	gr	een = 0	
19	bl	ue = 255 - degree * 3	
20	return	<pre>int(red),int(green),int(blue)</pre>	
21	while True	:	
22	for i	in range(0, 2).	
23		In range(0, 8): lue=pip1_read_apalog()/1023+360+i+45	
24	if	value > 360 :	
26		value = value-360	
27	re	d,green,blue=HSL_RGB(value)	
28	np	[i] = (red,green,blue)	
29	np.sho	w()	

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Rotate the potentiometer, and then the color ring of the RGB LED module also rotates.

The following is the program code:

1	from microbit import *
2	<pre>import neopixel</pre>
3	np = neopixel.NeoPixel(pin0, 8)
4	<pre>def HSL_RGB(degree):</pre>
5	degree=degree/360*255
6	if degree < 85:
7	red = 255 - degree * 3
8	green = degree * 3
9	blue = 0
10	elif degree < 170:
11	degree = degree - 85
12	red = 0
13	green = 255 - degree * 3
14	blue = degree * 3
15	else:
16	degree = degree - 170
17	red = degree * 3
18	green = 0
19	blue = 255 - degree * 3
20	<pre>return int(red), int(green), int(blue)</pre>
21	while True:
22	for i in range(0, 8):
23	value=pin1.read_analog()/1023*360+i*45
24	if value > 360 :
25	value = value-360
26	red,green,blue=HSL_RGB(value)
27	<pre>np[i] = (red, green, blue)</pre>
28	np. show()

Set the number of pins and LED to control the RGB LED module.

```
np = neopixel.NeoPixel(pin0, 8)
```

Custom HSL_RGB() function is used to convert HSL color to RGB color, returning the RGB value corresponding to the current hue angle.

```
def HSL_RGB(degree):
    degree=degree/360*255
    if degree < 85:
        red = 255 - degree * 3
        green = degree * 3
        blue = 0
    elif degree < 170:
        degree = degree - 85
        red = 0
        green = 255 - degree * 3
        blue = degree * 3
    else:
        degree = degree - 170
        red = degree * 3
        green = 0
        blue = 255 - degree * 3
    return int(red), int(green), int(blue)
```

In the for loop, the analog voltage of the potentiometer is read and converted to the corresponding hue angle. The hue difference between each two led is 45. The HSL_RGB() function is called to convert the HSL color system to the RGB color system, return the RGB value corresponding to the current hue angle to make the LED achieve the effect of rainbow.

```
while True:
for i in range(0, 8):
    value=pin1.read_analog()/1023*360+i*45
    if value > 360 :
        value = value-360
    red, green, blue=HSL_RGB(value)
    np[i] = (red, green, blue)
    np.show()
```

Chapter 15 Light Sensor

In this chapter, we will learn the micro:bit built-in light sensor and photoresistor.

Project 15.1 Built-in Light Sensor

In this project, we use the micro:bit built-in light sensor to measure the brightness of light.

Component list

Component knowledge

Light sensor

Micro:bit detects the ambient light intensity through the LED matrix. In forward bias mode, the LED screen works as a display. In reverse bias mode, the LED screen works as a basic light sensor that can be used to detect ambient light.

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import	project)				
File type	Path	File name			
HEX file	/Projects/BlockCode/15.1_LightIntensityMeter	LightIntensityMeter.hex			
After importing successfully, the code is shown as below:					

Search	Q	forever				
Basic		serial write valu	le "le	vel" =	light	level
O Input			+	+ +	+	+ +
O Music		pause (ms) 500				

Check the connection of the circuit, verify it correct and download the code into the micro:bit. Open the serial port console, then you can see the reading light intensity. Cover the LED screen with your hand or increase the light shining on it, you can see the change in value, the range of values is 0-255, 0 is dark, 255 is the brightest, as shown below.

level:228	
level:229	
level:46	
level:35	
level:34	
level:69	
level:72	
2 level:73	*

Reference

Block	Function
	Detect the light level (how bright or dark it is) of the
light level	darkness and 255 means bright light.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name		
Python file	/Projects/PythonCode/15.1_LightIntensityMeter	LightIntensityMeter.py		
After loading succe	ssfully, the code is shown as below:			
P Mu 1.0.2 - LightIntensityMe	ter.py	– 🗆 ×		
Mode New Lo LightIntensi tyMeter. py	ad Save Flash Files REFL Plotter Com-in Com-out Theme	Check Help Quit		
1 from micro	bit import *			
2 while True	:			
3 item =	display.read_light_level()			
4 print(i	tem)			

Check the connection of the circuit, verify it correct, download the code into the micro:bit. Open the serial port console, then you can see the reading light intensity. Cover the LED screen with your hand or increase the light shining on it, you can see the change in value, the range of values is 0-255, 0 is dark, 255 is the brightest, as shown below.

. . .

V Mu 1.0.2 - LightIntensityMeter.py	- U X
Mode Load Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Check	P Out
1 from microbit import *	
2 while True:	
<pre>item = display.read_light_level()</pre>	
4 print(item)	
BBC micro:bit REPL 95 95 95 95 94 95 95	
The falls is independent of the	

The following is the program code:

1	from microbit import *
2	while True:
3	<pre>item = display.read_light_level()</pre>
4	<pre>print (item)</pre>

Reference

display.read_light_level()

Use the display's LEDs in reverse-bias mode to sense the amount of light falling on the display, return an integer between 0 and 255 representing the light level. The larger the value, the brighter the light.

Project 15.2 Night Light

In this project, we will make a night light.

Component list

Component knowledge

Photoresistor

A Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with respect to receiving luminosity (light) on the component's light sensitive surface. A Photoresistor's resistance value will change in proportion to the ambient light detected. With this characteristic, we can use a Photoresistor to detect light intensity. The Photoresistor and its electronic symbol are as follows.

The circuit below is often used to detect the change of a photoresistor's resistance value:

In the above circuit, when a Photoresistor's resistance vale changes due to a change in light intensity, the voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can be obtained by measuring this voltage.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name	
HEX file	/Projects/BlockCode/15.2_NightLight	NightLight.hex	

After importing successfully, the code is shown as below:

Search	Q	forever + + + + + +
Basic		
⊙ Input		If analog read pin Po + 2 + 400 then
O Music		digital write pin P1 ▼ to 1
Led		else 🕞
C Loops		digital write pin P1 ▼ to 0
🔀 Logic		
—		

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Cover the photoresistor with your hand, the LED is turned ON. Move the hand away, the LED is turned OFF.

Read the analog voltage value of the P0 pin.

analog read pin 🛛 PO 🔻

If the analog voltage read is greater than or equal to 400, it is considered to be occluded, and the LED is turned ON. Or the LED is turned OFF.

if analog read pin P0 ▼ ≥ ▼	400	then
digital write pin P1 ▼ to 1	+ +	+
else		Θ
digital write pin P1 ▼ to 0	+ +	
\odot		

Python code

Open the .py file with Mu. Code, the path is as below:

Fil	le type	Path	File name			
Ру	thon file	/Projects/PythonCode/15.2_NightLight	NightLight.py			
After loa	ading succes	sfully, the code is shown as below:				
🕜 Mu 1.0.2	- NightLight.py		– – ×			
Mode	Image: Mode Imag					
NightLight.p	ightLight.py 🗙					
1 f	1 from microbit import *					
2 W	while True:					
3	value = pin0.read_analog()					
4	if value>=400:					
5	pin1.write_digital(1)					
6	else:					
7	<pre>pin1.write_digital(0)</pre>					

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Cover the photoresistor with your hand, then the LED is turned ON. Move the hand away, then the LED is turned OFF.

182 Chapter 15 Light Sensor

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	<pre>value = pin0.read_analog()</pre>
4	if value>=400:
5	<pre>pin1.write_digital(1)</pre>
6	else:
7	pin1.write_digital(0)

Read the analog voltage value of the P0 pin.

```
value = pin0.read_analog()
```

If the analog voltage read is greater than or equal to 400, it is considered to be occluded, and the LED is turned ON. Otherwise the LED is turned OFF.

if value>=400: pin1.write_digital(1) else: pin1.write_digital(0)

Chapter 16 Temperature Sensor

In this chapter, we will learn the micro:bit built-in temperature sensor and thermistor.

Project 16.1 Built-in Temperature Sensor

In this project, we measure the temperature with the micro:bit's built-in temperature sensor.

Component list

Circuit

Connect micro:bit and PC via micro the USB cable.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

Check the connection of the circuit, verify it correct, and download the code into micro:bit, and then LED dot matrix screen will display the current detected temperature.

Reference

Python code

Open the .py file with Mu. Code, the path is as below:

File type		Path		File name		
Python file	/Projects/F	PythonCode/16.1_BuiltIr	Thermometer	BuiltInThe	rmometer.py	
After loading su	ccessfully, the co	de is shown as below:			- 0 X	
	Image: state of the state o					
BuiltInThermometer.py 💥						
1 from mic	robit import	*				
2 while Tr	ue:					
3 disp	lay.scroll(te	emperature())				

Check the connection of the circuit, verify it correct, and download the code into micro:bit, and then LED dot matrix screen will display the current detected temperature.

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	<pre>display.scroll(temperature())</pre>

Display the detected temperature on the LED dot matrix.

display.scroll(temperature())

Reference

temperature()			
Return the temperature of the micro:bit in Celcius.			
display.scroll()			
scrolls a string across the display			

Project 16.2 Thermistor

In this project, we will use a thermistor to detect the ambient temperature.

Component list

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect temperature intensity. A Thermistor and its electronic symbol are shown below.

The relationship between resistance value and temperature of a thermistor is:

Rt=R*EXP[B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15+celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following:

We can use the value measured by the analog pin of micro:bit to obtain resistance value of thermistor, and then we can use the formula to obtain the temperature value.

Therefore, the temperature formula can be derived as:

 $T2 = 1/(1/T1 + \ln(Rt/R)/B)$

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(<u>How to import project</u>)							
File type		Path			File name		
HEX file	/Projects/	/BlockCode/16.2_Externa	alThermomete	r	ExternalThermometer.hex		
After importing	successfully, the co	ode is shown as below:					
Search	Q	forever	+	+	+ +	+	+
Bas	ic	show number	round T	temp	erature		
ο Inpu	ıt	Show Humber	+	+	+ +	+	
🞧 Mus	sic	+ + +	+ +				

Check the connection of the circuit, verify it correct, download the code into the micro:bit, and the LED dot matrix will display the detected temperature.

The temperature measured by the thermistor and the temperature measured by the micro:bit's built-in temperature sensor may have slight difference. This is because the hardware used is different, and there are certain differences in the manufacturing of the components. It is within a reasonable range and can be ignored.

Obtain the temperature data measured by the thermistor, and then round up and display on the LED display.

Reference

Block	Function
temperature(C) P0 -	Belongs to the Freenove extension block. Get the temperature data measured by the thermistor.

Extensions

If you want to import Freenove extensions in a new project, follow the steps below to add them.

Python code

Open the .py file with Mu. Code, the path is as below:

	ile type	Path	File name
F	Python file	/Projects/PythonCode/16.2_ExternalThermometer	ExternalThermometer.py
After I	oading succes	sfully, the code is shown as below:	
🕜 Mu 1.	0.2 - ExternalThermom	ieter.py	- 🗆 ×
Mode		a Save Flash Files REPL Plotter Coom-in Com-out The	he Check Help Quit
ExternalT	hermometer.py 🗶		
1	from microl	pit import *	
2	import math	1	
3	while True	:	
4	adcValı	ue = pin0.read_analog()	
5	V = ado	cValue*3.3/1023.0	
6	$Rt = V_{i}$	/((3.3-V)/10)	
7	tempC :	= (1/(1/(273.15+25) + math.log(Rt/10)/3950))-273.3	15
8	display	<pre>v.scroll(round(tempC))</pre>	

Check the connection of the circuit, verify it correct, download the code into the micro:bit, and the LED dot matrix will display the detected temperature.

The following is the program code:

1	<pre>from microbit import *</pre>
2	import math
3	while True:
4	<pre>adcValue = pin0.read_analog()</pre>
5	V = adcValue*3.3/1023.0
6	Rt = V/((3.3-V)/10)
7	tempC = $(1/(1/(273.15+25) + \text{math.log}(Rt/10)/3950))-273.15$
8	<pre>display.scroll(round(tempC))</pre>

Read the analog voltage of the thermistor and calculate the resistance of the thermistor.

adcValue = pin0.read_analog()
V = adcValue*3.3/1023.0
Rt = V/((3.3-V)/10)

Calculate the current temperature according to the resistance value of the thermistor and then display it on the LED dot matrix screen. For the formula, please refer to the component knowledge.,.

tempC = (1/(1/(273.15+25) + math.log(Rt/10)/3950))-273.15display.scroll(round(tempC))

Chapter 17 Joystick

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which are electronic modules that work on the same principle as the Rotary Potentiometer.

Project 17.1 Displaying Joystick Data

In this project, we will read the output data of a joystick and display it.

Component list

Component knowledge

Joystick

A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the same time (usually used to control direction on a two dimensional plane). And it also has a third direction capability by **pressing down (Z axis/direction)**.

This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees of each other, placed in such a manner as to detect shifts in direction in two directions simultaneously and with a Push Button Switch in the "vertical" axis, which can detect when a User presses on the Joystick.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import proje	<u>ct</u>)								
File type		Path	Path File name					ame	
HEX file	/Projects/I	BlockCode/17.1_Disp	layJoystick	Data		DisplayJoystickData.hex			
After importing succe	essfully, the code	e is shown as below:							
Search	Q 🔓	orever	+						
Basic		serial write va	lue <mark>"x"</mark>) = 🔒	nalog	read	pin	P2 🔻	
 Input 		serial write va	lue y") = a	nalog	read	pin	P1 ▼	
Music		serial write va	lue "z") = d	igita	l rea	d pin	P0 🔻	
C Led				+	+	+	+	+	+
Radio		pause (ms) 500							

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Open the serial console, then you can see the Joystick data, as shown below.

z: 1	
x:524	
y:511	
z:0	
x:524	
y:512	
z:1	
x:524	
y:512	

Read the analog voltage value of P1 and P2 pins and the digital voltage value of P0 pin, and print the values every 500ms.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name			
Python file	/Projects/PythonCode/17.1_DisplayJoystickData	DisplayJoystickData.py			
After loading suc	essfully, the code is shown as below:				
🕞 Mu 1.0.2 - DisplayJoysti	Data.py	– 🗆 X			
	ad Save Flash Files REPL Plotter Com-in Com-out Theme	Check Help Quit			
DisplayJoystickData.py 🗙					
i from mich	obit import *				
2 White Irt	e: = pip2 road apalog()				
3 XVat	= pin2.read_analog()				
s zVal	= pin0.read_digital()				
6 print	(xVal.vVal.zVal)				
7 sleep	(500)				

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Click on the REPL, and then press the micro:bit reset button to see the Joystick data.

BEC micro:bit KEPL
524 512 1
53 512 1
961 3 1
524 512 1
524 512 1
524 512 1
524 512 0
524 512 0
524 512 1
524 512 1
524 512 1
524 512 1

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	xVal = pin2.read_analog()
4	yVal = pin1.read_analog()
5	zVal = pin0.read_digital()
6	<pre>print(xVal, yVal, zVal)</pre>
7	sleep (500)

Read the analog voltage value of P0, P1, P2 pins.

xVal = pin2.read_analog()
yVal = pin1.read_analog()
zVal = pin0.read digital()

Print data every 500ms.

print(xVal, yVal, zVal)
sleep(500)

Project 17.2 Showing Direction

This project shows the direction of the Joystick with arrows on the dot matrix.

Component list

It is same as the previous project.

Circuit

It is same as the previous project.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name
HEX file	/Projects/BlockCode/17.2_Joystick	Joystick.hex
A.C. 1		

After importing successfully, the code is shown as below:

Search Q	forever	+ + + +	+ +									
Basic	set xVal ▼ to	analog read pin F	•2 ▼									
O Input	set yVal ▼ to	analog read pin F	21 -									
O Music	set zVal ▼ to	digital read pin	P0 -									
C Led	if zVal 🔻	= 🔹 0 then										
I Radio	clear screen											
C Loops	show number 0						<					
🔀 Logic	else if xVa	1 🗸 🔨 450	and 🔻	yVal y		650	and		yVal 🔻	> •	450	then 🗩
Variables	clear screen	+ + + +										
🗰 Math	show arrow Nor	th 🔻	+ +	+ +	+ +	+	÷ ÷	+	+ +	-	+ +	
✓ Advanced	else if xVa	1 • • • 650	and 🔻	yVal		650	and		yVal 🔻	> •	450	then 🖯
_	clear screen											
	show arrow Sou	th 🔹 a 🛛 a	+ +	+ +	+ +	+		+	+ +		+ +	+ +
	else if yVa	1 🔹 🕞 650	and 🔻	xVal		650	and		xVal 🔻	> •	450	then 🖯
	clear screen show arrow Wes		+ +		+ +				+ +	-	+ +	a a

Search Q	else if yVal • < • 450 and • xVal • < • 650 and • xVal • > • 450 ti	hen 🗩
Basic	clear screen	+
⊙ Input	show arrow East	
O Music	else if xVal • < • 450 and • yVal • > • 650 then	Θ
Led	clear screen	
I Radio	show arrow North West -	+
C Loops	else if XVal V < 450 and V YVal V < 450 then	Θ
🔀 Logic	clear screen	
Variables	show arrow North East -	+
🖽 Math	else if XVal V > 050 and V VVal V > 050 then	Θ
✓ Advanced	clear screen a sea se	
	show arrow South West -	+
	else if xVal • > • 650 and • yVal • < • 450 then	Θ
	clear screen	
	show arrow South East V	
	else	Θ
	clear screen	

Check the connection of the circuit and verify it correct. Download the code into the micro:bit, and then the direction of the Joystick will be displayed on the dot matrix.

Get the values in the X, Y, and Z directions.

if zVal 🔻 = 🔹 0 th	en + +						
clear screen							
show number 0	+ +	+ + +	+ + +	+ + +	* *	+ + +	
else if XVal 🔻 < 🔹 450	and 🔻	yVal 🔻 🤇	650	nd 🔻 y	Val 🔻 🕨 🔻	450 ther	Θ
clear screen	+ +	+ + +		+ + +	+ +	+ + +	+
show arrow North 🔻	+ +	+ + +	+ + +	+ + +	+ +	+ + +	+
else if XVal V > 650	and 🔻	yVal 🔻	650	nd 🔻 🗸 y	Val 🔻 🕨 🔻	450 ther	• Θ
clear screen		+ + +	+ + +			+ + +	
show arrow South	+ +	+ + +	+ + +	+ + +	+ +	+ + +	
else if yVal V > 650	and 🔻	xVal 🔻	650	nd 🔻 🗙	Val 🔻 🔉 🔻	450 ther	• Θ
clear screen							
show arrow West 🔻							
else if yVal 🔻 450	and 🔻	xVal 🔻 <	650	and 🔻 💽	(Val 🔻 🔉 🔻	450 the	en 🗩
clear screen	+ +	* + + ·	+ + +	+ + +	· + +	+ + +	÷
show arrow East 🔻	+ +	+ + + ·	+ + +	+ + +	+ +	+ + +	
else if xVal 🔻 < 🔻 450	and 🔻	yVal 🔻 🔉 🔻	650 the	n			Θ
clear screen	+ +	+ + + -	+ + +	+ + +	+ +	+ + +	+
show arrow North West 🔻	+ +	* * * *	+ + +		+ +	+ + +	
else if XVal 🔻 < 🔹 450	and 🔻	yVal 🔻 < 🔻	450 the	'n			Θ
clear screen							
show arrow North East 🔻							
else if XVal V > V 650							
		yVal V	650 the	'n			
clear screen	+ +	yVal V	650 the	n + + +	- + +		*
clear screen	and •	yval • •	650 the	n 	+ + + +	 	+
clear screen show arrow South West V else if XVal V > V 650	and •	yVal • • •	450 the	n	· ·	· · ·	
clear screen show arrow South West ▼ else if xVal ▼ > ▼ 650 clear screen	and V and V	yVal • • •	450 the	n + + + n			
clear screen show arrow South West else if xVal clear screen show arrow South East	and V and V	yVal V > V	450 the	n + + + n			

Display the corresponding arrow image according to the values of the X, Y, and Z directions.

support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name						
Python file	/Projects/PythonCode/17.2_Joystick	Joystick.py						
After loading succ	essfully, the code is shown as below:							
Mu 1.0.2 - Joystick.py								
		$\sim \sim \sim$						
(P)(+) (±)(±)(⇔)(⊜)()(-\-)(⊕)(Q)(୯)	(曲)(?)(也)						
Mode New 1	oad Save Flash Files REPL Plotter Zoom-in Zoom-out Theme	Check Help Quit						
Joystick.py 🗶	it improve a							
1 Trom micror	it import *							
2 circle = Ir	age("099900:"							
3	"90090:" "90090:"							
4	"90090;" "00000;"							
5	"90090:" "90090:"							
6 while Twy								
7 white frue:	ning read analog()							
s xvat =	pin2.read_analog()							
yvat =	ping read digital()							
10 ZVat -	o.							
in 11 2 Val	0. nlav clear()							
u die	play.clear()							
elif x	$[a] \leq 450$ and $\sqrt{a} \leq 650$ and $\sqrt{a} \geq 450$:							
15 die	play.clear()							
16 die	play, show(Image, ARROW N)							
17 elif x	a >650 and v Val < 650 and v Val >450:							
18 dis	play.clear()							
19 dis	play.show(Image.ARROW_S)							
20 elif v	al >650 and $xVal < 650$ and $xVal >450$:							
21 dis	display.clear()							
22 dis	display.show(Image.ARROW W)							
23 elif y\	al < 450 and xVal < 650 and xVal >450:							
24 dis	play.clear()							
25 dis	play.show(Image.ARROW_E)							
26 elif X\	al <450 and yVal > 650:							
27 dis	play.clear()							
28 di S	play.show(Image.ARROW_NW)							
29 elif X\	al <450 and yVal < 450:							
ao dris	play.clear()							
31 dis	play.show(Image.ARROW_NE)							
32 elif X\	al > 650 and yVal > 650:							
aa dri s	play.clear()							
34 dis	play.show(Image.ARROW_SW)							
25 elif X\	al > 650 and yVal < 450:							
ae dis	play.clear()							
a7 dis	play.show(Image.ARROW_SE)							
as else:								
39 dris	play.clear()							

Check the connection of the circuit and verify it correct. Download the code into the micro:bit and then the direction of the Joystick will be displayed on the dot matrix.

The following is the program code:

1	<pre>from microbit import *</pre>
2	circle = Image("09900:"
3	<i>"</i> 90090: <i>"</i>
4	<i>"</i> 90090: <i>"</i>
5	<i>"</i> 90090: <i>"</i>
6	<i>"</i> 09900 <i>"</i>)
7	while True:
8	xVal = pin2.read_analog()
9	yVal = pin1.read_analog()
10	zVal = pin0.read_digital()
11	if $zVal == 0$:
12	display.clear()
13	display.show(circle)
14	elif xVal <450 $$ and yVal < 650 and yVal >450:
15	display.clear()
16	display.show(Image.ARROW_N)
17	elif xVal >650 and yVal < 650 and yVal >450:
18	display.clear()
19	display.show(Image.ARROW_S)
20	elif yVal >650 and xVal < 650 and xVal >450:
21	display.clear()
22	display.show(Image.ARROW_W)
23	elif yVal < 450 and xVal < 650 and xVal >450:
24	display.clear()
25	display.show(Image.ARROW_E)
26	elif xVal $\langle 450 \rangle$ and yVal $\rangle 650$:
27	display.clear()
28	display.show(Image.ARROW_NW)
29	elif xVal $\langle 450 \rangle$ and yVal $\langle 450 \rangle$:
30	display.clear()
31	display.show(Image.ARROW_NE)
32	elif xVal > 650 and yVal > 650 :
33	display.clear()
34	display.show(Image.ARROW_SW)
35	elif xVal > 650 and yVal < 450 :
36	display.clear()
37	display.show(Image.ARROW_SE)
38	else:
39	display.clear()

Custom image number "0" will be displayed when pressing the Joystick.

circle = Image("09900:" "90090:" "90090:" "90090:" "09900")

Get the values in the X, Y, and Z directions.

xVal = pin2.read_analog()
yVal = pin1.read_analog()
zVal = pin0.read_analog()

Display the corresponding arrow image according to the value of X, Y, Z in three directions

```
if zVal == 1:
    display.clear()
    display. show(circle)
elif xVal \langle 450 \rangle and yVal \langle 650 \rangle and yVal \rangle 450:
    display.clear()
    display.show(Image.ARROW_N)
elif xVal >650 and yVal < 650 and yVal >450:
    display.clear()
    display.show(Image.ARROW_S)
elif yVal >650 and xVal < 650 and xVal >450:
    display.clear()
    display. show(Image. ARROW W)
elif yVal < 450 \, and xVal < 650 and xVal >\!\!450:
    display. clear()
    display.show(Image.ARROW_E)
elif xVal <450 and yVal > 650:
    display.clear()
    display. show (Image. ARROW_NW)
elif xVal <450 and yVal <450:
    display.clear()
    display. show(Image. ARROW NE)
elif xVal > 650 and yVal > 650:
    display.clear()
    display.show(Image.ARROW_SW)
elif xVal > 650 and yVal < 450:
    display.clear()
    display.show(Image.ARROW_SE)
else:
    display.clear()
```

Chapter 18 74HC595 and LED Bar Graph

In this chapter, we will learn a new component: 74HC595

Project 18.1 Flowing Water Light

In this project, we will use a 74HC595 chip and LED Bar Graph to make a flowing water light.

Component list

Component knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the RPI board are required to control the 8 ports of the 74HC595 chip.

The ports of 74HC595 are described as follows:

Pin name	Pin number	Description			
Q0-Q7	15, 1-7	Parallel data output			
VCC	16	The positive electrode of power supply, the voltage is 2~6V			
GND	8	The negative electrode of power supply			
DS	14	Serial data Input			
OE	13	Enable output,			
		When this pin is in high level, Q0-Q7 is in high resistance state			
		When this pin is in low level, Q0-Q7 is in output mode			
ST_CP	12	Parallel update output: when its electrical level is rising, it will update the			
		parallel data output.			
SH_CP	11	Serial shift clock: when its electrical level is rising, serial data input register			
		will do a shift.			
MR	10	Remove shift register: When this pin is in low level, the content in shift			
		register will be cleared .			
Q7'	9	Serial data output: it can be connected to more 74HC595 in series.			

For more detail, please refer to the datasheet.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project) File type Path **HEX file** ../Projects/BlockCode/18.1_FlowingLight02 FlowingLight02.hex After importing successfully, the code is shown as below: Search ... O on start Basic set 74hc595 data pin at 🛛 PO 💌 launch pin at P1 💌 clock pin at P2 💌 Input Music forever C Led for index from 0 to 7 Freenove do write index 💌 from highest 🔻 bit 1 Radio pause (ms) 500 💌 C Loops 24 Logic

After checking the connection of the circuit and verify it correct, download the code into micro:bit, and you can see that the LED flow from left to right in turn circularly.

Set 74HC595's data pin as P0, launch pin as P1, and clock pin as P2.

on start	+	+	+ +	+	+ +	+	+ ·	+
set 74hc595 data	a pin at	P0 🔻	launch	pin at	P1 -	clock	pin at	P2 🔻
	+	+	+ +	+	+ +	+	+ -	+ +

In the for loop, the number '1' moves index bit to the left, writes the shifted value to 74HC595 serially, and then turn ON the LED through parallel output of Q0-Q7 to realize flowing water light.

for	inde	x fr	om 0 to	7						
do	write	1	<< ~	inde	ex 🔹	from	hi	ghest	•	bit
	pause	(ms)	500 🔻			+	+		+	

Reference

Block	Function
set 74hc595 data pin at P0 ▼ launch pin at P0 ▼ clock pin at P0 ▼	It belongs to Freenove Extension Block. It is used to set data pin, launch pin, clock pin for 74HC595.
write 0 from highest - bit	It belongs to Freenove Extension Block. The data of 0-255 is serially written to 74HC595, and then output in parallel through Q0-Q7. The order of data writing is either from the highest bit or from the least bit.
0 ~ • 0	It belongs to Freenove Extension Block. Move data to the left (x) bit or to the right (x) bit.
python code

Open the .py file with Mu. Code, the path is as below:

	File type	Path	File name
	Python file	FlowingLight02.py	
After	loading succe	essfully, the code is shown as below:	
🕜 Mu 1.0	0.2 - FlowingLight02.p	у	
Mode		ad Save Flash Files REPL Plotter Com-in Com-out Theme	Check Help Quit
FlowingL	ight02.py 🗶		
1	from micro	bbit import *	
2	LSBFIRST=1	-	
3	MSBFIRSI=	2 pipe compact to 7440505	
4	#define tr	HE PINS CONNECT TO 74HC595	
5	latchPin-r	n = 405 PHL OF (400595(PHL4))	
0 7	clockPin=r	$n_1 = \frac{1}{2} $	
8	def shift()ut(value.dPin.cPin.order):	
9	for i	in range (8):	
10	CF	Pin.write digital(0)	
11	i	forder==MSBFIRST:	
12		flag=value< <i &="" 0x80<="" td=""><td></td></i>	
13		if flag==0x80:	
14		dPin.write_digital(1)	
15		else:	
16		dPin.write_digital(0)	
17	el	se:	
18		flag=value>>i & 0x01	
19		if flag==0x01:	
20		dPin.write_digital(1)	
21		else:	
22		dPin.write_digital(0)	
23	CF	Pin.write_digital(1)	
24	while True		
25	for i	in range(8):	
26	Va	alue=0x01<<1	
27	la	atonPin.write_digital(0)	
28	Si	<pre>introductvatue,dataPin,clockPin,LSBFIRST) stebDip_write_digital(1)</pre>	
29		<pre>con(F00)</pre>	
30	S	(100)	

After checking the connection of the circuit and verify it correct, download the code into micro:bit, and you can see that the LED flow from left to right in turn circularly.

The following is the program code:

1	<pre>from microbit import *</pre>
2	LSBFIRST=1
3	MSBFIRST=2
4	#define the pins connect to 74HC595

5	dataPin=pinO #DS Pin of 74HC595(Pin14)
6	latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)
7	clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)
8	<pre>def shiftOut(value, dPin, cPin, order):</pre>
9	for i in range (8):
10	cPin.write_digital(0)
11	if order==MSBFIRST:
12	flag=value< <ii &="" 0x80<="" td=""></ii>
13	if flag==0x80:
14	dPin.write_digital(1)
15	else:
16	dPin.write_digital(0)
17	else:
18	flag=value>>i & 0x01
19	if flag==0x01:
20	dPin.write_digital(1)
21	else:
22	dPin.write_digital(0)
23	cPin.write_digital(1)
24	while True:
25	for i in range(8):
26	value=0x01< <i< td=""></i<>
27	latchPin.write_digital(0)
28	<pre>shiftOut(value, dataPin, clockPin, LSBFIRST)</pre>
29	latchPin.write_digital(1)
30	sleep(500)

Define pins P0, P1, P2 for 74HC595.

```
from microbit import *
LSBFIRST=1
MSBFIRST=2
#define the pins connect to 74HC595
dataPin=pin0 #DS Pin of 74HC595(Pin14)
latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)
clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)
```

Custom shiftOut() function is used to write data to 74HC595 serially.

In the for loop, the value of the variable value shifts to the left i-bit, then the value of the variable value is written to 74HC595, and then turn ON the LED one by one through parallel output of Q0-Q7 to realize flowing water light.

while True:	
for i in range(8):	
value=0x01< <i< th=""><th></th></i<>	
latchPin.write_digital(0)	
shiftOut(value, dataPin, clockPin, LSBFIRST)	
latchPin.write_digital(1)	
sleep(500)	

Reference

shiftOut(value, dPin, cPin, order)

This function is used to serially write 8 bits of data to 74HC595. Value represents data to be written to 74HC595 registers, dPin represents data pins, cPin represents clock pins, and order represents priority bit flags (high or low). About order, LSBFIRST starts writing from low data, MSBFIRST starts writing from high data.

<< operator

"<<" is a left shift operator that moves all bits of byte data to the left (high) direction by a few bits and add 0 on the right (low). For example, shift binary 0001 1110 to the left by 1 bit to get 0011 1100. If you shift 1 bit to the right, it is 0000 1111.

">>" is the right shift operator, as opposed to the left shift operator, which moves all bits of byte data to the right (low) direction by a few bits and add 0 on the left(high).

& operator

& is a bitwise AND operation, which performs an AND operation on binary bit. Operation rules: 0&0=0;

0&1=0; 1&0=0;

1&1=1

For example:

A=0011 1100

B=0000 1101

A&B=0000 1100

Chapter 19 74HC595 and 7-segment display

In this chapter, we will learn a new component: 7-segment display.

Project 19.1 7-segment display

In this project, we will use the 74HC595 chip and a 7-segment digital tube display to display the numbers 0 to 9.

Component list

Component knowledge

1-digit 7-segment display

A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point represented, which consists of 8 LEDs. There are two kinds of 1-digit 7-segment display: Common Anode and Common Cathode. The one we use is that have a Common Anode(+) and individual Cathodes. Its internal structure and pin designation diagram is shown below:

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by combining LEDs with different states of ON and OFF, we can display different characters (Numbers and Letters). For example, to display a "0": we need to turn ON LED segments 7,6,4,2,1 and 9, and turn OFF LED segments 10 and 5.

If we use a byte to show the state of the LEDs that connected to pin 5, 10, 9, 1, 2, 4, 6, 7, we can use 0 to represent the state of on and 1 for off. Then the number 0 can be expressed as a binary number 11000000, namely hex 0xc0.

The numbers and letters that can be display are shown below:

Number/Letter	Binary number	Hexadecimal number	Decimal number
0	11000000	0xc0	192
1	11111001	0xf9	249
2	10100100	0xa4	164
3	10110000	0xb0	176
4	10011001	0x99	153
5	10010010	0x92	146
6	10000010	0x82	130
7	11111000	0xf8	248

8	1000000	0x80	128
9	10010000	0x90	144
А	10001000	0x88	136
b	10000011	0x83	131
С	11000110	0xc6	198
d	10100001	0xa1	161
E	10000110	0x86	134
F	10001110	0x8e	142

Circuit

support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

File type	Path	File name					
HEX file	/Projects/BlockCode/19.1_SevenSegmentDisplay	SevenSegmentDisplay.hex					
After importing successfully, the gode is shown as below:							

After importing successfully, the code is shown as below:

Search	Q	on start	+								
Basic		set 74hc595 data	nin at	PA -	launch	nin at	D1 -	clock	nin at	- P2	
⊙ Input			-	+	+ +	+	+ +	+	+	+	+
O Music			+								
Led		forever									
Freenove		for index fr	om 0 to	9							
Radio		do show number pause (ms)	index								
C Loops			500 🔻								
X Logic											
· •			+								

After checking the connection of the circuit and verifying it correct, the code is downloaded into micro:bit. You can see that the 7-segment display shows 0, 1... 9 in turn. Set 74HC595 data pin as P0, launch pin as P1, and clock pin as P2.

on start	+							+ +
set 74hc595 data	a pin at	P0 -	launch	pin at	P1 -	clock	pin at	P2 🔻
	+	+	+ +	+	+ +	+	+ -	+ +

In the for loop, the digital tube displays the numbers 0 to 9 in turn, and change the number every 500ms.

Reference

Block	Function			
Show Number 0 -	It belongs to Freenove Extension Block. It is used to control digital tube to display number and character 0-F by using 74HC595.			

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name					
Python file	/Projects/PythonCode/19.1_SevenSegmentDisplay	SevenSegmentDisplay.py					
After leading successfully, the code is shown as helew:							

After loading successfully, the code is shown as below:

🕜 Mu 1.0.2 - SevenSegmentDisplay.py

P	
Mode	New Load Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Check Help Quit
SevenSegm	entDisplay. py 🗙
1	<pre>from microbit import *</pre>
2	number =[0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90]
3	LSBFIRST=1
4	MSBFIRST=2
5	#define the pins connect to 74HC595
6	dataPin=pin0 #DS Pin of 74HC595(Pin14)
7	latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)
8	clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)
9	<pre>def shiftOut(value,dPin,cPin,order):</pre>
10	for i in range (8):
11	cPin.write_digital(0)
12	if order==MSBFIRST:
13	flag=value< <i &="" 0x80<="" th=""></i>
14	if flag==0x80:
15	dPin.write_digital(1)
16	else:
17	dPin.write_digital(0)
18	else:
19	flag=value>>i & 0x01
20	if flag==0x01:
21	dPin.write_digital(1)
22	else:
23	dPin.write_digital(0)
24	cPin.write_digital(1)
25	while True:
26	for Num in number:
27	latchPin.write_digital(0)
28	shiftOut(Num,dataPin,clockPin,MSBFIRST)
29	latchPin.write_digital(1)
30	steep(500)

After checking the connection of the circuit and verifying it correct, the code is downloaded into micro:bit. You can see that the 7-segment display shows 0, 1... 9 in turn. The following is the program code:

1	<pre>from microbit import *</pre>
2	number =[0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90]
3	LSBFIRST=1
4	MSBFIRST=2
5	#define the pins connect to 74HC595
6	dataPin=pin0 #DS Pin of 74HC595(Pin14)
7	latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)
8	clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)
9	<pre>def shiftOut(value, dPin, cPin, order):</pre>
10	for i in range (8):
11	cPin.write_digital(0)
12	if order==MSBFIRST:
13	flag=value< <ii &="" 0x80<="" td=""></ii>
14	if flag==0x80:
15	dPin.write_digital(1)
16	else:
17	dPin.write_digital(0)
18	else:
19	flag=value>>i & 0x01
20	if flag==0x01:
21	dPin.write_digital(1)
22	else:
23	dPin.write_digital(0)
24	cPin.write_digital(1)
25	while True:
26	for Num in number:
27	latchPin.write_digital(0)
28	shiftOut(Num,dataPin,clockPin,MSBFIRST)
29	latchPin.write_digital(1)
30	sleep(500)

Define variable number to store numbers 0, 1, 2...9 in Hexadecimal. Define pins P0, P1, P2 for 74HC595.

number =[0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90]
LSBFIRST=1
MSBFIRST=2
#define the pins connect to 74HC595
dataPin=pin0 #DS Pin of 74HC595(Pin14)
latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)
clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)

Custom shiftOut () function is used for writing data to 74HC595 serially.

```
def shiftOut(value, dPin, cPin, order):
    for i in range (8):
        cPin.write_digital(0)
        if order==MSBFIRST:
            flag=value<<i & 0x80
            if flag==0x80:
                dPin.write_digital(1)
            else:
                dPin.write_digital(0)
        else:
            flag=value>>i & 0x01
            if flag==0x01:
                dPin.write_digital(1)
            else:
                dPin.write_digital(0)
        cPin.write_digital(1)
```

Call the shiftOut() function, and write the hexadecimal number stored in the number variable to 74HC595 serially, then turn ON the LEDs through parallel output of Q0 \sim Q7.

while True: for Num in number: latchPin.write_digital(0) shiftOut(Num, dataPin, clockPin, MSBFIRST) latchPin.write_digital(1) sleep(500)

Chapter 20 LCD1602

In this chapter, we will learn the LCD1602 display.

Project 20.1 I2C LCD1602

This project realizes the display of the current ambient temperature on the LCD1602 display.

Component list

Component knowledge

LCD1602

The LCD1602 Display Screen can display 2 lines of characters in 16 columns. It is capable of displaying numbers, letters, symbols, ASCII code and so on. As shown below is a monochrome LCD1602 Display Screen along with its circuit pin diagram

I2C LCD1602 Display Screen integrates a I2C interface, which connects the serial-input & parallel-output module to the LCD1602 Display Screen. This allows us to only use 4 lines to the operate the LCD1602.

I2CLCD screen1

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I2C address is 0x27(0x3F).

PCF8574 pin diagram:

PCF8574 module pin and LCD1602 pin are corresponding to each other and connected with each other:

Because of this, as stated earlier, we only need 4 pins to control the 16 pins of the LCD1602 Display Screen through the I2C interface.

In this project, we will use I2CLCD1602 to display some static characters and dynamic variables.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name				
HEX file	/Projects/BlockCode/20.1_LCD1602	LCD1602.hex				
After importing successfully, the code is shown as below:						

Check the connection of the circuit, verify it correct, and download the code into the micro:bit, and then the LCD screen will display the current ambient temperature.

So far, at this writing, we have two types of LCD1602 on sale. One needs to adjust the backlight, and the other does not.

The LCD1602 that does not need to adjust the backlight is shown in the figure below.

If the LCD1602 you received is the following one, and you cannot see anything on the display or the display is not clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen can display clearly.

LCD initialization, we provide two kinds of LCD screen, you can write I2C address (0x27 or 0x3F) according to the LCD screen you receive. If you enter 0, it will automatically search for the correct I2C address and connect.

on start	+					
LCD initialize	with Ad	ldress	0	+		
	+	+	+	+		

Display the temperature of the current environment on the LCD display.

Reference

Block	Function
LCD initialize with Address 0	LCD initialization, input LCD I2C address (0x27 or 0x3F). If you enter 0, it will automatically find the correct address and connect.
show number 10 at x 0 y 0	The LCD screen displays the number in the x column, y column of the screen.
show string "Hello" at x 0 y 0	The LCD screen displays the string in the x column, the y column of the screen

Extensions

If you want to import the LCD1602 expansion block in a new project, follow the steps below to add it.

🗲 Go back	Extensions		?
i2cLCD16	02	٩	
Click ad	d. <u>izeLCD1602</u> makecode (2C LCD1602 package for microbit Learn more		
	Search Q		

Python code

Import necessary Python file into micro:bit

In the code of this tutorial, the LCD1602 module and DHT11 module are used, so it is necessary to import "I2C_LCD1602_Class.py" and "DHT11_RW.py" into the micro:bit. You can skip this section if you don't use them. When you need, you can come back to import them.

The import method is as follows:

Search on the C drive and find the "mu_code" folder.

iie Home	Share V	/iew	Manage Drive Tools	Local Disk (C:)							-	× ~ ?
← → ~ ↑ ∎	■ > This PC	> Loca	al Disk (C:) →						٥,	Search Local	Disk (C:)	Q,
	^	Na	ime	^	Date modified		Туре	Size				
Double click	on "mu <u></u>	_cod	le" to ent	er the folder.								
🗐 📝 🛄 🖛			Search Tools	mu_code - Search Result	s in Local Disk (C:)						-	\times
File Home	Share V	View	Search									~ 🕐
← → ∽ ↑ 🚺	🎚 🔸 Search R	lesults in	n Local Disk (C:)					`	~ ×	mu_code		×
📌 Quick access	*	ŀ	mu_code Date modi	e fied: 27/09/2019 15:01		C:\Us	ers\Freenove					
Downloads	A A	I	C:\Users\F	reenove\Recent		Туре:	Shortcut	Date mo Size: 708	dified: bytes	29/09/2019 10:0	06	
Pictures	*											

Copy "I2C_LCD1602_Class.py" and "DHT11_RW.py" from following path into "mu_code" directory.

File type	Path	File name				
Python file	/Projects/PythonLibrary	I2C_LCD1602_Class.py	DHT11_RW.py			

After pasting successfully, you can see them as below:

lts in Local Disk (C:) > mu_code V C						
Name	Date modified	Туре	Size			
data_capture	25/09/2019 16:10	File folder				
fonts	27/07/2019 13:26	File folder				
📊 images	27/07/2019 13:26	File folder				
- music	27/07/2019 13:26	File folder				
	27/07/2019 13:26	File folder				
👶 DHT11_RW.py	04/09/2019 11:43	PY File	7 KB			
I2C_LCD1602_Class.py	06/09/2019 13:38	PY File	2 KB			

Open the Mu software, click "Files". Here we take "I2C_LCD1602_Class.py" as an example, drag "I2C_LCD1602_Class.py" into micro:bit.

Mu 1.02 Image: Description of the second state o	×
Select it and keep pressing with	left mouse button, drag it to left box.
Files on vour micro:bit:	Files on your computer:
	DHT11_RW.py I2C_LCD1602_Class.py

After importing successfully, you will see it on the left.

Files on your micro:bit:	Files on your computer:
I2C_LCD1602_Class.py	DHT11_RW.py I2C_LCD1602_Class.py

The import method of "DHT11_RW.py" is the same as described above. You just need to import the one you need to use.

Files on your micro:bit:	Files on your computer:
DHT11_RW.py	DHT11_RW.py
	I2C_LCD1602_Class.py

Note, after you upload other file into micro:bit, the original content will be covered. You need to import it next time you use it.

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/20.1_LCD1602	LCD1602.py

After the code is loaded, as shown below, import the "I2C_LCD1602_Class.py" file to micro:bit before

downloading the code. (How to import?) (F) Mu 1.0.2 - LCD1602.py × ð Q ~ Ð C ? ሪ T \odot EEE . Flash Files Check Mode New REPL. Plotter Theme Help Quit Load Save Zoom-in Zoom-out LCD1602. py 🗶 from microbit import * 1 2 from I2C_LCD1602_Class import * $lcd = I2C_LCD1602(0x27)$ 3 while True: 4 lcd.puts("temperature:"+str(temperature()), 0, 0) 5

After the "I2C_LCD1602_Class.py" file is imported, check the connection of the circuit and verify it correct. Download the code into the micro:bit and the LCD screen will display the current ambient temperature.

NOTE: After the program is executed, if you cannot see anything on the display or the display is not clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen can display the Temperature clearly.

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>from I2C_LCD1602_Class import *</pre>
3	$1cd = I2C_LCD1602(0x27)$
4	while True:
5	<pre>lcd.puts("temperature:"+str(temperature()), 0, 0)</pre>

Export everything from the I2C_LCD1602_Class module, create the object lcd of the I2C_LCD1602 class, and enter the I2C address of the LCD screen. Change the I2C address according to the LCD type.

If the chip of LCD is PCF8574 T, the i2c address is 0x27.

If the chip of LCD is PCF8574A T, the i2c address is 0x3F.

```
from I2C_LCD1602_Class import *
lcd = I2C_LCD1602(0x27)
```

Read the temperature data, and then call the puts function in the I2C_LCD1602 class to display the temperature on the LCD screen.

lcd.puts("temperature:"+str(temperature()), 0, 0)

Reference

puts(String, x, y)

This function is defined in the I2C_LCD1602 class. The function is to display the string on the LCD screen x column, y row, x range is 0-15, y range is 0-1.

Chapter 21 Motor

In this chapter, we will learn the comprehensive application of motor.

Project 21.1 Relay & Motor

In this project, we will control a relay to drive a motor.

Component list

support@freenove.com

Component knowledge

DC Motor

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with two terminal pins.

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of the power supply, the DC Motor will rotate in opposite direction. This is important to note.

Relay

Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate the Switch action. When the electromagnet is energized (powered), it will attract internal contacts completing a circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a small low amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in automobiles, especially from the ignition to the starter motor.

The following is a basic diagram of a common relay and the image and circuit symbol diagram of the 5V relay used in this project:

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is called Closed End and pin 2 is called the Open End.

Inductor

The symbol of Inductance is "L" and the unit of inductance is the "Henry" (H). Here is an example of how this can be encountered: 1H=1000mH, 1mH=1000\muH.

An Inductor is a passive device that stores energy in its Magnetic Field and returns energy to the circuit whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire (usually copper wire). Inductors will hinder the changing current passing through it. When the current passing through the Inductor increases, it will attempt to hinder the increasing movement of current; and when the current passing through the inductor decreases, it will attempt to hinder the decreasing movement of current. So the current passing through an Inductor is not transient.

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is present in this coil circuit it can disconnect the power to the relay, the current in the Relay's coil does not stop immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid any adverse effect on the power supply.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

Check the connection of the circuit, verify it correct, and download the code into micro:bit. Press button A, then the motor starts to rotate. Release the button, then the motor stops.

It is to determine whether the button A is pressed. If pressed, P0 outputs a high level, the relay is turned on, and the motor is running; if it is not pressed, P0 outputs a low level, and the motor does not run.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/21.1_Relay	Relay.py
After loading succes	ssfully, the code is shown as below:	
🕜 Mu 1.0.2 - Relay.py		– 🗆 X
Mode New Loa	a Save Flash Files REPL Plotter Coom-in Zoom-out Theme	Check Help Quit
1 from micro	bit import *	
2 while True	:	
3 if but	ton_a.is_pressed():	
4 pi	n0.write_digital(1)	
5 else:		
6 pi	n0.write_digital(0)	

Check the connection of the circuit, verify it correct, and download the code into micro:bit. Press button A, then the motor starts to rotate. Release the button, then the motor stops.

The following is the program code:

If A is pressed, P0 outputs a high level, the relay is turned on, and the motor is running. If it is not pressed, P0 outputs a low level, and the motor does not run.

if button_a.is_pressed():
 pin0.write_digital(1)
else:
 pin0.write_digital(0)

Project 21.2 Potentiometer & Motor

In this project, a rotary potentiometer is used to control a motor.

Component list

Component knowledge

L293D

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered later in this Tutorial).

Port description of L293D module is as follows:

Pin name	Pin number	Description	
ln x	2, 7, 10, 15	Channel x digital signal input pin	
Out x	3, 6, 11, 14	Channel x output pin, input high or low level according to In x pin, get	
		connected to +Vmotor or 0V	
Enable1	1	Channel 1 and channel 2 enable pin, high level enable	
Enable2	9	Channel 3 and channel 4 enable pin, high level enable	
0V	4, 5, 12, 13	Power cathode (GND)	
+V	16	Positive electrode (VCC) of power supply, supply voltage 4.5~36V	
+Vmotor	8	Positive electrode of load power supply, provide power supply for the Out	
		pin x, the supply voltage is +V~36V	

For more details, please see datasheet.

When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through the PWM, However the motor then can only rotate in one direction.

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals are exchanged, not only controls the speed of motor, but also can control the speed of the motor.

In practical use the motor is usually connected to channel 1 and by outputting different levels to in1 and in2 to control the rotational direction of the motor, and output to the PWM wave to Enable1 port to control the motor's rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to in3 and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control the motor's rotational speed.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name
HEX file	/Projects/BlockCode/21.2_Motor	Motor.hex

After importing successfully, the code is shown as below:

Search Q	
Basic	set potentiometer + to analog read pin P0 +
 Input 	if potentiometer v < v 411 then
Music	
C Led	digital write pin P2 • to 0
l Radio	analog write pin P1 🔻 to 411 - 💌 potentiometer 🔻 🗧 411 🗙 🕇 1023
C Loops	analog set period pin P1 → to (μs) 20000
🔀 Logic	also if potentionate 2 (12) that a second state is a second
Variables	
🖽 Math	digital write pin P1 ▼ to 0
▲ Advanced	analog write pin P2 - to potentiometer - 612 ÷ 411 × 1023
$f_{(x)}$ Functions	analog set period pin P2 ▼ to (µs) 20000
∄ ⊟ Arrays	else \varTheta
<u>म</u> Text	digital write pin P1 ▼ to 1
😨 Game	digital write pin P2 ▼ to 1
🖾 Images	
Pins	

Check the connection of the circuit and verify it correct. Download the code into the micro:bit and rotate the potentiometer. When the potentiometer is in the middle position, the motor stops rotating. When the potentiometer gets away from middle position, the motor speed increases. The potentiometer moves to the limit and the motor speed reaches its maximum value. When the potentiometer is on a different side, the rotating direction of motor is different.
Read the analog value of the P0 pin of the potentiometer. When the analog value is less than 411, the motor rotates forward. When the analog value is greater than 612, the motor reverses. When the analog value is between 411 and 612, the motor does not rotate.

set	poten	tiomet	er 🔻	to	anal	og re	ad pi	n PØ	•
if	Po	tentio	meter	•	• ک	41	11	then	+
else	if	poter	ntiome	eter		2 🔻	612)) t	hen 😑
else									Θ
	+	+	+	+	+	+	+	+	+
\odot									

Set P2 to low level. P1 outputs PWM signal with an interval of 20ms and duty cycle changes with the change of potentiometer variable, then motor rotates forward.

digital write pin P2 ▼ to	0							
analog write pin P1 ▼ to	411 -	• pot	entiome	eter 🔻	֥	411	x •	1023
analog set period pin P1 🔻	to (μs)	20000	+	+	+ +	+	+ +	+

Set P1 to low level, P2 output PWM signal with an interval of 20ms, duty cycle changes with the change of potentiometer variable, then motor rotates in a reverse direction.

digital write pin P1	▼ to	0								
analog write pin P2 🔻	to	potenti	iometer 🔻	- •	612	÷▼	411	× •	1023	
analog set period pin	P2 ▼	to (µs)	20000	+	+ +	+	+	+ +	+	

When P1, P2 pin output high level, motor does not rotate.

Reference

Block	Function
analog write pin P0 🔻 to 1023	Write an analog signal (0 through 1023) to the pin you set.
analog set period pin P0 ▼ to (µs) 20000	Configure the period of Pulse Width Modulation (PWM) on the specified analog pin. Before you call this function, you should set the specified pin as analog.

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name					
Python file	/Projects/PythonCode/21.2_Motor	Motor.py					
After loading succes	sfully, the code is shown as below:						
🕐 Mu 1.0.2 - Motor.py – 🗆 🗙							
	d Save Flash Files REPL Plotter Com-in Z	Q C Theme Check Help Quit					
1 from microl	pit import *						
2 while True							
3 potent	iometer=pin0.read_analog()						
4 if pote	entiometer<=411:						
5 pii	n2.write_digital(0)						
6 pii	n1.write_analog((411-potentiometer)/411*1	.023)					
7 pii	n1.set_analog_period(20)						
8 elif po	otentiometer>=612:						
9 pi	n1.write_digital(0)						
10 pir	<pre>pin2.write_analog((potentiometer-612)/411*1023)</pre>						
11 pi	n2.set_analog_period(20)						
12 else:							
13 pi	n1.write_digital(1)						
14 pi	n2.write_digital(1)						

Check the connection of the circuit and verify it correct. Download the code into the micro:bit and rotate the potentiometer. When the potentiometer is in the middle position, the motor stops rotating. When the potentiometer gets away from middle position, the motor speed increases. The potentiometer moves to the limit and the motor speed reaches its maximum value. When the potentiometer is on a different side, the rotating direction of motor is different.

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	<pre>potentiometer=pin0.read_analog()</pre>
4	if potentiometer<=411:
5	pin2.write_digital(0)
6	<pre>pin1.write_analog((411-potentiometer)/411*1023)</pre>
7	pin1.set_analog_period(20)
8	elif potentiometer>=612:
9	<pre>pin1.write_digital(0)</pre>
10	pin2.write_analog((potentiometer-612)/411*1023)
11	pin2.set_analog_period(20)
12	else:
13	<pre>pin1.write_digital(1)</pre>
14	<pre>pin2.write_digital(1)</pre>

Read the analog value of the P0 pin of the potentiometer. When the analog value is less than 411, the motor rotates forward. When the analog value is greater than 612, the motor reverses. When the analog value is between 411 and 612, the motor does not rotate.

Set P2 to low level. P1 outputs PWM signal with an interval of 20ms, duty cycle changes with potentiometer variable, then motor rotates forward.

pin2.write_digital(0)
pin1.write_analog((411-potentiometer)/411*1023)

pin1.set_analog_period(20)

Set P1 to low level. P2 outputs PWM signal with an interval of 20ms, duty cycle changes with the change of potentiometer variable, then motor rotates in a reverse direction.

pin1.write_digital(0)
pin2.write_analog((potentiometer-612)/411*1023)
pin2.set_analog_period(20)

When P1, P2 pins output high level, motor does not rotate.

pin1.write_digital(1)
pin2.write_digital(1)

Reference

<pre>pin.set_analog_period(int)</pre>				
sets the interval; of the PWM output of the pin in milliseconds				
see https://en.wikipedia.org/wiki/Pulse-width_modulation				
pin.write_analog(value)				
value is between 0 and 1023				

Chapter 22 Servo

In this chapter, we will learn about Servos which are a rotary actuator type motor that can be controlled rotate to specific angles.

Project 22.1 Sweep

In this project, we will use a servo.

Component list

support@freenove.com

Component knowledge

Servo

Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor and control circuit board. Most Servos only have a 180-degree range of motion via their "horn". Servos can output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars, model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit.

We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of the corresponding values are as follows:

High level time	Servo angle
0.5ms	0 degree
1ms	45 degree
1.5ms	90 degree
2ms	135 degree
2.5ms	180 degree

As can be seen from the above table, the servo rotates from 0 to 180 degrees, and the corresponding pulse width is 0.5-2.5ms. Then the analog voltage value is written to the micro:bit pin ranging from 25.6 to 128.

Circuit

This circuit Servo is powered by 5V, and the Micro:bit P0 pin controls the Servo rotation angle.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name
HEX file	/Projects/BlockCode/22.1_Sweep	Sweep.hex
A.C		

After importing successfully, the code is shown as below:

Search	Q 🗍 🗗	prever							
Basic		for index fro	om 0 to (180					
O Input		do servo write	pin PØ	• to	index	•			
🞧 Music		pause (ms)	10 🗸	+	+ +	+			
C Led					+ +				
Radio		for index2 fr	rom 0 to	180	- +	-	+	+	-
C Loops		do servo write	pin PØ	• to	180	- 💌	ind	ex2 🔻)
🔀 Logic		pause (ms)	10 🗸	+	+ +	+	+	+	+
Variables					· +				
—									

Check the connection of the circuit, verify it correct, and download the code into micro:bit. The servo rotates from 0 degrees to 180 degrees, then from 180 degrees to 0 degrees, and repeats in an endless loop.

In the for loop of 0-180, let the servo change from 0 to 180 degrees.

In the for loop of 0-180, take the difference between 180 and index2, and let the servo rotate from 180 degrees to 0 degrees.

Reference

python code

Open the .py file with Mu. Code, the path is as below:

I	ile type	Path	File name
F	Python file	/Projects/PythonCode/22.1_Sweep	Sweep.py
After I	oading succes	sfully, the code is shown as below:	
🕜 Mu 1.	0.2 - Sweep.py		– 🗆 X
Mode		A Save Kepl REPL Plotter Com-in Zoom-out Theme Ch	eck Help Quit
Sweep, py	×		
1	from microb	oit import *	
2	<pre>def map(va</pre>	lue,fromLow,fromHigh,toLow,toHigh):	
3	return	<pre>(toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) +</pre>	toLow
4	while True		
5	pin0.se	et_analog_period(20)	
6	for i	in range(180):	
7	pi	n0.write_analog(map(i,0,180,25.6,128))	
8	sle	eep(5)	
9	for i	in range(180,0,-1):	
10	pii	n0.write_analog(map(i,0,180,25.6,128))	
11	sle	eep(5)	

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, and then the servo will from 0 degree to 180 degree, and then from 180 degree to 0 degree, which repeats in an endless loop.

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>
3	<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow</pre>
4	while True:
5	pinO.set_analog_period(20)
6	for i in range(180):
7	pin0.write_analog(map(i,0,180,25.6,128))
8	sleep(5)
9	for i in range(180,0,-1):
10	pin0.write_analog(map(i,0,180,25.6,128))
11	sleep(5)

Define map functions to convert values in one range to values in another range.

def map(value, fromLow, fromHigh, toLow, toHigh):
 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

Set the interval of the PWM signal to 20ms. In a 0-180 for loop, convert the value in the range 0-180 to an analog voltage value in the range of 25.6~128, and then output the corresponding PWM signal to turn the servo from 0 degrees to 180 degrees.

pin0.set_analog_period(20)
for i in range(180):
 pin0.write_analog(map(i, 0, 180, 25. 6, 128))
 sleep(5)

In a 180-0 for loop, convert the value in the range 0-180 to the analog voltage value in the range of 25.6~128, and then output the corresponding PWM signal to rotate the servo from 180 degrees to 0 degrees.

for i in range(180, 0, -1):
 pin0.write_analog(map(i, 0, 180, 25.6, 128))
 sleep(5)

Project 22.2 Knob

In this project, we will use a potentiometer to control the rotation angle of the Servo.

Component list

Circuit

The P0 pin of this circuit microbit reads the voltage of the potentiometer, and the P1 pin drives the servo.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

Check the connection of the circuit and verify it correct, download the code into the micro:bit, rotate the potentiometer, and the servo will follow the rotation.

Read the analog voltage value of the P0 pin, map the analog voltage value in the range of 0-1023 to the angle of the servo in the range of 0-180, and then drive the servo to rotate the corresponding angle through the P1 pin.

servo write pin	P1 🔻	to	map	analog read pin	P0 🔻	from low	0	high	1023	to low	0	high (180

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/22.2_Knob	Knob.py
After loading succes	ssfully, the code is shown as below:	
🕜 Mu 1.0.2 - Knob.py		- 🗆 X
	a save Files Files REFL Plotter Coom-in Com-out Theme Check	k Help Quit
Knob. py 🗶	and annual a	
2 def map(va	lue,fromLow,fromHigh,toLow,toHigh):	
3 return	<pre>(toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + to</pre>	oLow
4 While True	:	
5 value=	pin0.read_analog()	
6 pin1.se	et_analog_period(20)	
7 pin1.w	rite_analog(map(value,0,1023,25.6,128))	

Check the connection of the circuit and verify it correct, download the code into the micro:bit, rotate the potentiometer, and the servo will follow the rotation.

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>
3	<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow</pre>
4	while True:
5	value=pin0.read_analog()
6	pin1.set_analog_period(20)
7	pin1.write_analog(map(value,0,1023,25.6,128))

Define map functions to convert values in one range to values in another range.

<pre>def map(value, fromLow, fromHigh, toLow, toHigh):</pre>
<pre>return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow</pre>

Set the period of PWM signal to 20 ms. Read the analog voltage value of P0 foot, convert the analog voltage value in the range of 0-1023 to the analog voltage value in the range of 25.6-128, and then output the corresponding PWM signal to rotate the servo at the corresponding angle.

value=pin0.read_analog()
pin1.set_analog_period(20)
pin1.write_analog(map(value, 0, 1023, 25.6, 128))

Chapter 23 Stepper Motor

In this chapter, we will learn how to drive a Stepper Motor, and understand its working principle.

Project 23.1 Stepper Motor

In this project, we will use micro:bit to control a stepper motor.

Component list

Component knowledge

Stepper Motor

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular displacement or linear displacement. In a non-overload condition, the speed of the motor and the location of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes in load as with a DC Motor.

A small Four-Phase Deceleration Stepper Motor is shown here:

The schematic diagram of a four-phase stepping motor is shown below:

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There are a specific number of individual coils, usually an integer multiple of the number of phases the motor has, when the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex diagonal groove or indentation in the Rotor's surface. The Rotor is usually made of iron or a permanent magnet. Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered sequence (producing a series of "steps" or stepped movements).

A common driving process is as follows:

In the sequence above, the Stepper Motor rotates once at a certain angle, which is called a "step". By controlling the number of rotational steps, you can then control the Stepper Motor's rotation angle. By defining the time between two steps, you can control the Stepper Motor's rotation speed. When rotating clockwise, the order of coil powered on is: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A \rightarrow \cdots$. And the rotor will rotate in accordance with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, $D \rightarrow C \rightarrow B \rightarrow A \rightarrow D \rightarrow \cdots$, the rotor will rotate in counter-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the stator will be located in the center of A B, which is called a half-step. This method can improve the stability of the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: $A \rightarrow AB \rightarrow B \rightarrow BC \rightarrow C \rightarrow CD \rightarrow D \rightarrow DA \rightarrow A \rightarrow \cdots$, the rotor will rotate in accordance to this sequence ar, a half-step at a time, called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper Motor will rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper Motor's housing) requires $32 \times 64 = 2048$ steps to make one full revolution.

ULN2003 Stepping motor driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output signal A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR interface can be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name				
HEX file	/Projects/BlockCode/23.1_StepperMotor	StepperMotor.hex				
After importing successfully, the code is shown as below:						

on start pause (ms) 🛛 10 🔻 led enable < false digital write pin P0 🔻 0 to digital write pin P1 🔻 to 0 forever digital write pin P2 🔻 to 1 digital write pin PØ to 1 digital write pin P3 🔻 0 digital write pin Ρ1 0 pause (ms) (10 🔻 digital write pin P2 < digital write pin P0 🛡 0 to digital write pin 0 P3 🔻 to digital write pin P1 🔻 0 to pause (ms) (10 💌 digital write pin 0 digital write pin P2 🔻 P0 🔻 0 to digital write pin 1 P1 🛡 to digital write pin P3 🔻 to 1 digital write pin 0 P2 to pause (ms) 10 🛡 digital write pin 0 P3 🔻 to

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, and then the stepper motor will rotate slowly.

In the code, the pins of P0, P1, P2 and P3 is set to high level in turn. When one pin is at a high level, set the other three pins to low level. So the coil is energized as follows: A_B_C_D_A... A_B_C_D_A_C_D... to make the stepper motor rotate.

Python code

Open the .py file with Mu. Code, the path is as below:

File ty	ре	Path	File name
Pytho	n file	/Projects/PythonCode/23.1_StepperMotor	StepperMotor.py
After loadin	g succes	sfully, the code is shown as below:	
🕜 Mu 1.0.2 - Ster	pperMotor.py		– 🗆 X
		a save Flash Files REPL Plotter Com-in Com-out Theme	Check Help Quit
StepperMotor.py	ĸ		
1 from	microb	oit import *	
2 disp	lay.of		
3 Pin	= [pin@), pin1, pin2, pin3]	
4 whil	e True		
5	for i -	i n Pin:	
6	for	· j in Pin:	
7		if i == j:	
8		j.write_digital(1)	
9		else:	
10		j.write_digital(0)	
11	sle	eep(10)	

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, and the stepper motor rotates slowly.

The following is the program code:

1	<pre>from microbit import *</pre>									
2	display.off()									
3	Pin = [pin0, pin1, pin2, pin3]									
4	while True:									
5	for i in Pin:									
6	for j in Pin:									
7	if i == j:									
8	j.write_digital(1)									
9	else:									
10	j.write_digital(0)									
11	sleep(10)									

Close the LED dot matrix screen to allow the GPIO pins associated with the LED dot matrix screen to be reused for other purposes. Define Pin list to store P0, P1, P2, P3 pin variables.

display.off() Pin = [pin0, pin1, pin2, pin3]

In the for loop, the pin order with output high level is P0, P1, P3 P0.... When one pin outputs high level, make the other three pins output low levels. Make the coil electrified as follows: A_B_C_D_A_... to make stepper motor rotate.

```
for i in Pin:
    for j in Pin:
        if i == j:
            j.write_digital(1)
        else:
            j.write_digital(0)
        sleep(10)
```

Chapter 24 Hygrothermograph

In this chapter, we will learn a commonly used sensor - Thermohygrometer DHT11.

Project 24.1 Hygrothermograph

In this project, we will use the micro:bit to read and print the temperature and humidity data of DHT11.

Component list

Component knowledge

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output digital signal has been calibrated by its manufacturer.

After being powered up, it will initialize in 1S's time. Its operating voltage is within the range of 3.3V-5.5V. The SDA pin is a data pin, which is used to communicate with other devices.

The NC pin (Not Connected Pin) are a type of pin found on various integrated circuit packages. Those pins have no functional purpose to the outside circuit (but may have an unknown functionality during manufacture and test). Those pins should not be connected to any of the circuit connections.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name			
HEX file	/Projects/BlockCode/24.1_DHT11	DHT11.hex			

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit and open the serial port controller, you can see the temperature and humidity of the current environment, as shown in the following figure:

temperature:27	
humidity:56	
temperature:27	
humidity:56	
temperature:27	•

Set sensor type to DHT11, data pin to P0, initialize DHT11 module, wait for 2 seconds

on start			
Query DHT11 -			
Data pin 🛛 P0 🔻			
Pin pull up true			
Serial output fa	lse 🔻		
Wait 2 sec after (query	true	
	+	+	÷

Every 1 s, the temperature and humidity data read will be printed out by serial port controller.

serial write value	"temperature" =	round 👻 Re	ead temperature 💌
serial write value	"humidity") =	round 🔹 Read	humidity 🔻
pause (ms) 1000 🔻	+ + +	+ + +	+ + + +

Reference

Extensions

If you want to import the DHT Sensor Extension Block into your new project, follow these steps to add it.

support@freenove.com

Python code

Import necessary Python file into micro:bit

In the code of this tutorial, the LCD1602 module and DHT11 module are used, so it is necessary to import "I2C_LCD1602_Class.py" and "DHT11_RW.py" into the micro:bit. You can skip this section if you don't use them. When you need, you can come back to import them.

The import method is as follows:

Search on the C drive and find the "mu_code" folder.

🟪 🕑 📙 🖛 I			Manage	Local Disk (C:)							-	×
File Home	Share V	/iew	Drive Tools									~ 🕐
$\leftarrow \rightarrow \checkmark \uparrow$	늘 > This PC	> Loca	II Disk (C:) →					√ č	5	Search Local D	isk (C:)	Ą
	^	Na	me	^	Date modified		Туре	Size				
Double click	k on "mu <u>-</u>	_cod	e" to ent	er the folder.								
🗐 🛃 🔚 🖛			Search Tools	mu_code - Search Results	in Local Disk (C:)						-	\times
File Home	Share V	View	Search									~ ?
$\leftarrow \rightarrow \div \uparrow$	💷 🔸 Search R	lesults in	Local Disk (C:)					~ >	c r	mu_code		×
📌 Quick acces 📃 Desktop	s *	ŀ	mu_cod Date modi	e fied: 27/09/2019 15:01		C:\U	sers\Freenove					
↓ Download Document Pictures	s * s *		C:\Users\F	e reenove\Recent		Туре	: Shortcut	Date modifie Size: 708 byt	ed: 29 tes)/09/2019 10:06	5	

Copy "I2C_LCD1602_Class.py" and "DHT11_RW.py" from following path into "mu_code" directory.

File type	Path	File name	
Python file	/Projects/PythonLibrary	I2C_LCD1602_Class.py	DHT11_RW.py

After pasting successfully, you can see them as below:

Ilts in Local Disk (C:) > mu_code 🗸 진			
Name	Date modified	Туре	Size
data_capture	25/09/2019 16:10	File folder	
fonts	27/07/2019 13:26	File folder	
📊 images	27/07/2019 13:26	File folder	
- music	27/07/2019 13:26	File folder	
	27/07/2019 13:26	File folder	
👶 DHT11_RW.py	04/09/2019 11:43	PY File	7 KB
I2C_LCD1602_Class.py	06/09/2019 13:38	PY File	2 KB

Open the Mu software, click "Files". Here we take "I2C_LCD1602_Class.py" as an example, drag "I2C_LCD1602_Class.py" into micro:bit.

Image: Ref region Image: Ref reg
Select it and keep pressing with left mouse button, drag it to left box.
Select it and keep pressing with left mouse button, drag it to left box.
Select it and keep pressing with left mouse button, drag it to left box.
Select it and keep pressing with left mouse button, drag it to left box.
Select it and keep pressing with left mouse button, drag it to left box.
Filesystem on micro-bit
Files on your micro:bit: Files on your computer:
DHT11_RW.py
I2C_LCD1602_Class py

After importing successfully, you will see it on the left.

Files on your micro:bit:	Files on your computer:
I2C_LCD1602_Class.py	DHT11_RW.py I2C_LCD1602_Class.py

The import method of "DHT11_RW.py" is the same as described above. You just need to import the one you need to use.

Files on your micro:bit:	Files on your computer:
DHT11_RW.py	DHT11_RW.py I2C_LCD1602_Class.py

Note, after you upload other file into micro:bit, the original content will be covered. You need to import it next time you use it.

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/24.1_DHT11	DHT11.py

After loading the code, as shown below. Before downloading the code, import the "DHT11_RW.py" file into

micro:bit first.(How to import?)

🕜 Mu 1.(0.2 - DHT11.py – 🗆 🗙
Mode	Image: New Load Image: Save Image: Save
DHT11.py	X
1	from microbit import *
2	from DHT11_RW import *
3	<pre>ifname == 'main':</pre>
4	sensor = DHT11(pin0)
5	while True:
6	try:
7	<pre>temperature , humidity = sensor.read()</pre>
8	<pre>print("temperature:"+str(temperature)+" C")</pre>
9	<pre>print("humidity:"+str(humidity)+"%")</pre>
10	except Exception as e:
11	<pre>print("Error : " + str(e))</pre>
12	<pre>time.sleep(1)</pre>

After importing the DHT11_RW.py file, check the connection of the circuit, verify it correct. And then download the code into micro:bit, click "REPL", press the micro:bit reset button, you can see the temperature and humidity of the current environment, as shown below:

BBC micro:bit REPL humidity:46.0% temperature:28.0 C humidity:46.0% temperature:28.0 C humidity:46.0% temperature:28.0 C humidity:46.0% temperature:28.0 C humidity:46.0% The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>from DHT11_RW import *</pre>
3	ifname == 'main':
4	sensor = DHT11(pin0)
5	while True:
6	try:
7	<pre>temperature , humidity = sensor.read()</pre>
8	<pre>print("temperature:"+str(temperature)+" C")</pre>
9	<pre>print("humidity:"+str(humidity)+"%")</pre>
10	except Exception as e:
11	<pre>print("Error : " + str(e))</pre>
12	time.sleep(1)

Export everything of DHT11_RW module, create object of DHT class, and set data pin to P0

from DHT11_RW import *
sensor = DHT11(pin0)

Every 1 second, call the read() function in DHT11 class, get the temperature and humidity data, and print them out separately.

```
while True:
    try:
        temperature , humidity = sensor.read()
        print("temperature:"+str(temperature)+" C")
        print("humidity:"+str(humidity)+"%")
        except Exception as e:
        print("Error : " + str(he))
        time.sleep(1)
```

Reference

sensor. read () The read() function is defined in DHT11 to obtain temperature and humidity data.

Chapter 25 Matrix Keypad

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards, which integrates a number of Push Button Switches as Keys for the purposes of Input.

Project 25.1 Matrix Keypad

In this project, we will make LCD screen display number and character pressed on matrix keyboard.

Component list

support@freenove.com

Component knowledge

4x4 Matrix Keypad

A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module):

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one pin and this is the same for the columns. Such efficient connections reduce the number of processor ports required. The internal circuit of the Keypad Matrix is shown below.

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the state of each key's position by column and row. Take column scanning method as an example, send low level to the first 1 column (Pin1), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed. Then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can get the state of all of the keys.
Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name				
HEX file	/Projects/BlockCode/25.1_Keypad	Keypad.hex				
After importing	ther importing suspensively the code is shown as below.					

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, the code is downloaded into micro:bit. When the key of the matrix keyboard is pressed, the LCD will display the corresponding numbers or characters.

Close the LED dot matrix screen, initialize the LCD, and store the values of the matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C, D, #, *, in the array group variable.

led o	enable (false		+							
LCD :	initial	ize wit	h Address	0	+	+	+	+	+	+	
			array of								
			array of	" 1"	2 "		3"	" A "	Θ	€	
			array of	" 4"	" 5		6"	"в"	Θ	€	
set	group	▼ to	array of	" 7"	. 8		9"	" c "	Θ	€	
	8P		array of	" *"	" 0		#"	" D "	Θ	•	There is no actual
											content in these
											two blocks.
			Θ								

Row scanning. Pins P9, P6, P10, P4 corresponds to the first, second, third and fourth rows. Make the pins output high level in turn, the other pins output low level.

Column scanning. Pins P3, P2, P1, P0 corresponds to the first, second, third and fourth columns. Reading high level means the key of current line and column is pressed. And the corresponding number or character in the group array will be displayed on the LCD.

if digital read pin P3 - = 1 then
set colume - to 🕢 - + + + + + + + + + + + +
show string group • get value at row • get value at colume • at x y 0
else if digital read pin P2 ▼ = ▼ 1 then ⊖
set colume - to 1
show string group • get value at row • get value at colume • at x y 0
else if digital read pin P1 1 then Θ
set colume - to 2
show string group • get value at row • get value at colume • at x y 0
else if digital read pin P0 1 then 👄
set colume - to 3
show string group • get value at row • get value at colume • at x y 0

Python code

Open the .py file with Mu. Code, the path is as below:

Oper	r the .py me wi		
	File type	Path	File name
	Python file	/Projects/PythonCode/25.1_Keypad	Keypad.py
After	the code is	loaded, as shown below, import the "I2C_LCD1602_Class.py" 1	file to micro:bit before
down	loading the co	ode. (<u>How to import?</u>)	
🕜 Mu 1.0).2 - Keypad.py		
Mode	New Load	Save Com-out Check Help	Quit
Keypad. py	from microbi	- import +	
1	from T2C LCD	602 Class import +	
2	display off()		
3	aroun=[["1"]	" "2" "2" "A"] ["A" "5" "6" "B"] ["7" "8" "Q" "C"]	["≠" "⊝" "#" "D"]]
4	Bin row = [n]	2, 3, A], [4, 3, 0, b], [7, 0, 5, c],	[^, 0, #, 0]]
6	Pin_column =	[nin3 nin2 nin1 nin0]	
7	lcd = T2C C	[pms, pmz, pmz, pm]	
8	lcd.clear()	(0,21)	
q	for i in ran	7e(4):	
10	Pinro	w[i].write digital(0)	
11	for i in ran	ze(4):	
12	Pinco	plumn[i].write digital(0)	
13	while True:		
14	for i in	range(4):	
15	Pin_r	<pre>pw[i].write_digital(1)</pre>	
16	for j	in range(4):	
17	i	f Pin_column[j].read_digital()==1:	
18		lcd.puts(group[i][j], 0, 0)	
19	Pin_r	ow[i].write_digital(0)	

After importing the I2C_LCD1602_Class.py file, check the connection of the circuit and verify it correct, and then download the code into micro:bit, and press the key of the matrix keyboard, LCD will display the corresponding number or character.

The following is the program code:

1	from microbit import *
2	<pre>from I2C_LCD1602_Class import *</pre>
3	display.off()
4	group=[["1", "2", "3", "A"], ["4", "5", "6", "B"], ["7", "8", "9", "C"], ["*", "0", "#", "D"]]
5	Pin_row = [pin9, pin6, pin10, pin4]
6	Pin_column = [pin3, pin2, pin1, pin0]
7	$1cd = I2C_LCD1602(0x27)$
8	lcd.clear()
9	for i in range(4):
10	<pre>Pin_row[i].write_digital(0)</pre>
11	for i in range(4):
12	<pre>Pin_column[i].write_digital(0)</pre>
13	while True:
14	for i in range(4):

15	<pre>Pin_row[i].write_digital(1)</pre>
16	for j in range(4):
17	<pre>if Pin_column[j].read_digital()==1:</pre>
18	<pre>lcd.puts(group[i][j], 0, 0)</pre>
19	<pre>Pin_row[i].write_digital(0)</pre>

Close the LED dot matrix screen, store the values of matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C, D,, *, in the array group. Store the pin variables of the control keyboard row to Pin_row, and store the pin variables of the control keyboard column to Pin_column. Create the I2C_LCD1602 object lcd, enter the I2C address and clear the screen. Set the pins connecting the matrix keyboard to low level.

```
display.off()
group=[["1", "2", "3", "A"], ["4", "5", "6", "B"], ["7", "8", "9", "C"], ["*", "0", "#", "D"]]
Pin_row = [pin9, pin6, pin10, pin4]
Pin_column = [pin3, pin2, pin1, pin0]
lcd = I2C_LCD1602(0x27)
lcd.clear()
for i in range(4):
        Pin_row[i].write_digital(0)
for i in range(4):
        Pin_column[i].write_digital(0)
```

Scan rows and columns. If the key in certain row and column is pressed, the corresponding number or character in the group array will be displayed on the LCD.

```
while True:
    for i in range(4):
        Pin_row[i].write_digital(1)
        for j in range(4):
            if Pin_column[j].read_digital()==1:
                lcd.puts(group[i][j], 0, 0)
        Pin_row[i].write_digital(0)
```

Project 25.2 Countdown Timer

This project makes a countdown timer.

Component list

It is same as the previous project.

Circuit

It is same as the previous project.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type	Path	File name				
HEX file	/Projects/BlockCode/25.2_CountdownTimer	CountdownTimer.hex				
After importing successfully, the code is shown as below:						

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, type in the value, press the '#'key, start countdown, the key '*' is reset.

Close the LED dot matrix screen, initialize the LCD and store the values of matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8, 9 in the array group.

Row scanning. Pins P9, P6, P10, P4 corresponds to the first, second, third and fourth rows. Make the pins output high level in turn, the other pins output low level.

Column scanning. Pins P3, P2, P1 corresponds to the first, second and third columns. When reading high level, the corresponding reaction will be executed.

Determine whether the first column on the left is pressed, and then determine which row of the column is pressed. If the "*" key of the fourth row and first column is pressed, clear the LCD screen content, and the Number1 variable is assigned 0; if the other keys 1, 4 or 7 is pressed, the Number1 variable is multiplied by 10 and the corresponding key value is added, and then reassigned to Number1 to achieve carry effect.

if digital read pin	P3 🔻 😑	• 1	then	+ +									
if row V = V	3 then	+ +	· +										
clear LCD	+ +	+ +											
set number1 ▼ to 0		+ +											
else	Θ	+ +											
set colume 🕶 to 🥥	$\mathbf{r}_{i} = -\mathbf{r}_{i}$	+ +	+	+ +	+	+	+	+ +	+	+	+ +	+	+
set number1 ▼ to	number1 🔹	x •	10	•• (group 🖣	get	: value	at ro		get val	ue at	colume '	9
•													
show number number1 -	at x 🧿	у 🕜											

Determine whether the second column on the left is pressed, and then determine which row of the column is pressed. If the "0" key of the fourth row and second column is pressed, the value of Number1 is multiplied by 10, and then reassigned to Number1 variable. If the other keys 2, 5 or 8 is pressed, the value of Number1 is multiplied by 10 and the corresponding key value is added, and then reassigned to Number1 to achieve carry effect.

Determine whether the third column on the left is pressed, and then determine which row of the column is pressed. If the "#" key of the fourth row and the third column is pressed, the countdown is performed by the while loop. If the other keys 3, 6, 9 is pressed, the value of Number1 will be multiplied by 10 and the corresponding key value is reassigned to the Number1 variable to achieve carry effect. The Number1 variable will decrease by 1 every 1s. During the cycle, if the "*" key is pressed or the value of Number1 variable is less than or equal to 0, the loop will jumper out.

support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type	Path	File name
Python file	/Projects/PythonCode/25.2_CountdownTimer	CountdownTimer.py
After the enderial	and an about below import the "ICC I CD1602 Cl	an nu" file to microphit before

After the code is loaded, as shown below, import the "I2C_LCD1602_Class.py" file to micro:bit before downloading the code.(<u>How to import?</u>)

Mu 1.0.2 - CountdownTimer.py

P	+ 1 2 2 2 2 2 2 2 2
Mode	New Load Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Check Help Quit
Countdown	Timer. py 🗙
1	from microbit import *
2	<pre>from I2C_LCD1602_Class import *</pre>
3	display.off()
4	group=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
5	Pin_row = [pin9, pin6, pin10, pin4]
6	Pin_column = [pin3, pin2, pin1, pin0]
7	led = 12C_LCD1602(0x27)
8	lucicitear()
9	for i in range(4):
10	Pin rowFil write digital(0)
12	for in range(4):
13	Pin column[i].write digital(0)
14	while True:
15	<pre>for i in range(4):</pre>
16	<pre>Pin_row[i].write_digital(1)</pre>
17	for j in range(3):
18	<pre>if Pin_column[j].read_digital()==1:</pre>
19	sleep(100)
20	<pre>if Pin_column[j].read_digital()==1:</pre>
21	if i==3 and j==0: #Press the "*" button
22	number=0
23	lcd.clear()
24	elif i==3 and j==1: #Press the "0" button
25	number=number*10
26	elitie===3 and j==2: #Press the "#" button
27	white irue:
28	led subs(tr(pumber) = 0 = 0)
29	number1
30	
31	if pip3 read digital()==1 or pumber==0;
22	
34	lcd,clear()
35	break
36	else: #Press the number button
37	number=number*10+group[i][j]
38	lcd.puts(str(number), 0, 0)
39	<pre>Pin_row[i].write_digital(0)</pre>

After importing the I2C_LCD1602_Class.py file, check the connection of the circuit and verify it correct, and download the code into micro:bit, type in the value, press the '#' key, start countdown, the key'*' is reset.

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>from I2C_LCD1602_Class import *</pre>

3	display.off()
4	group=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
5	Pin_row = [pin9, pin6, pin10, pin4]
6	Pin_column = [pin3, pin2, pin1, pin0]
7	$1cd = I2C_{LCD1602}(0x27)$
8	lcd.clear()
9	number=0
10	for i in range(4):
11	<pre>Pin_row[i].write_digital(0)</pre>
12	for i in range(4):
13	<pre>Pin_column[i].write_digital(0)</pre>
14	while True:
15	<pre>for i in range(4):</pre>
16	<pre>Pin_row[i].write_digital(1)</pre>
17	for j in range(3):
18	<pre>if Pin_column[j].read_digital()==1:</pre>
19	sleep(100)
20	<pre>if Pin_column[j].read_digital()==1:</pre>
21	if i==3 and j==0: #Press the "*" button
22	number=0
23	lcd.clear()
24	elif i==3 and j==1: #Press the "0" button
25	number=number*10
26	elif i==3 and j==2: #Press the "#" button
27	while True:
28	lcd. clear ()
29	Icd. puts (str (number), 0, 0)
30	number-=1
31 22	sleep (1000)
3Z 22	11 pins. read_digital() 1 or number0:
33 24	number-0
34 35	icu. ciear ()
36	also #Press the number button
37	number=number* $10+group[i][i]$
38	lcd. puts(str(number), 0, 0)
00	Pin row[i]. write digital(0)

Close the LED dot matrix screen, store the values of matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8, 9 in the array group, store the pin variables of the control keyboard row in Pin_row, and store the pin variables of the control keyboard column in Pin_column. Create the object lcd of class I2C_LCD1602, enter the I2C address and clear the screen, and set the pins connecting the matrix keyboard to low level.

display.off()
group=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

```
Pin_row = [pin9, pin6, pin10, pin4]
Pin_column = [pin3, pin2, pin1, pin0]
lcd = I2C_LCD1602(0x27)
lcd.clear()
number=0
for i in range(4):
        Pin_row[i].write_digital(0)
for i in range(4):
        Pin column[i].write digital(0)
```

Scan the rows and columns to check if the key is pressed.

If the "*" key is pressed, the number variable is assigned 0

If the "#" key is pressed, then the content of the while loop is executed. Number variable decreases by 1 every 1s to achieve the countdown effect. During the period, if the "*" key is pressed or the value of number variable is 0, the while loop jumper out and the number variable is assigned with 0.

If the number key is pressed, the number variable is multiplied by 10 and add the corresponding key value, then reassigned to the number variable.

```
while True:
    for i in range (4):
       Pin_row[i].write_digital(1)
       for j in range(3):
           if Pin_column[j].read_digital()==1:
               sleep(100)
               if Pin_column[j].read_digital()==1:
                                          #Press the "*" button
                   if i==3 and j==0:
                       number=0
                       lcd.clear()
                   elif i==3 and j==1:
                                         #Press the "0" button
                        number=number*10
                   elif i==3 and j==2:
                                         #Press the "#" button
                       while True:
                           lcd.clear()
                           lcd.puts(str(number), 0, 0)
                           number-=1
                           sleep(1000)
                           if pin3.read_digital()==1 or number==0:
                               number=0
                               lcd.clear()
                               break
                                          #Press the number button
                   else:
                       number=number*10+group[i][j]
                   lcd.puts(str(number), 0, 0)
       Pin_row[i].write_digital(0)
```

Chapter 26 Infrared Motion Sensor

In this chapter, we will learn a widely used sensor, Infrared Motion Sensor.

Project 26.1 Sense Light

In this project, we will make a Motion Detector, with the human body infrared pyroelectric sensors.

When someone is in close proximity to the Motion Detector, it will automatically light up and when there is no one close by, it will be out.

This Infrared Motion Sensor can detect the infrared spectrum (heat signatures) emitted by living humans and animals.

Component list

Component knowledge

The following is the diagram of infrared Motion sensor(HC SR-501):

Description:

- 1. Working voltage: 5v-20v(DC) Static current: 65uA.
- 2. Automatic Trigger. When a living body enters into the active area of sensor, the module will output high level (3.3V). When the body leaves the sensor's active detection area, it will output high level lasting for time period T, then output low level(0V). Delay time T can be adjusted by the potentiometer R1.
- 3. According to the position of Fresnel lenses dome, you can choose non-repeatable trigger modes or repeatable modes.

L: non-repeatable trigger mode. The module output high level after sensing a body, then when the delay time is over, the module will output low level. During high level time, the sensor no longer actively senses bodies.

H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body leaves during the period of high level output. After this, it starts to time and output low level after delaying T time.

- 4. Induction block time: the induction will stay in block condition and does not induce external signal at lesser time intervals (less than delay time) after outputting high level or low level
- 5. Initialization time: the module needs about 1 minute to initialize after being powered ON. During this period, it will alternately output high or low level.
- 6. One characteristic of this sensor is when a body moves close to or moves away from the sensor's dome edge, the sensor will work at high sensitively. When a body moves close to or moves away from the sensor's dome in a vertical direction (perpendicular to the dome), the sensor cannot detect well (please take note of this deficiency). Actually this makes sense when you consider that this sensor is usually placed on a celling as part of a security product. Note: The Sensing Range (distance before a body is detected) is adjusted by the potentiometer.

We can regard this sensor as a simple inductive switch when in use.

Circuit

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type		Path					File na	me	
HEX file	/P	Projects/BlockCode/26.1	_SenseLigh	nt		SenseLight.hex			
After import succ	cessfully, the cod	e is shown as below:							
Search	Q	forever	+						
Basic		digital write p	in P1 🔻	to	digit	tal read	pin	P0 🔻	
O Input			+	+	+	+ +	+	+	

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, then HC-SR501 module is initialized for about one minute. After initialization, when someone is moving in its detection range, the LED will light up; otherwise it will not respond. Two potentiometers can adjust the detection distance and Induction block time.

If human movement is detected, the module will output high level. If not, the module will always output low level. The level read from P0 pin is written to the P1 pin, so that the level of P0 and P1 pin will be consistent to control the LED.

Python code

Open the .py file with Mu. Code, the path is as below:

File typ	be	Path	File name
Python	file	/Projects/PythonCode/26.1_SenseLight	SenseLight.py
After loading	succes	sfully, the code is shown as below:	
P Mu 1.0.2 - Sense	eLight.py		– 🗆 X
Mode New SenseLight. py		d Save Flash Files REPL Plotter Com-in Com-out	Theme Check Help Quit
1 from	micro	bit import *	
2 while	e True	:	
3 1	i f pin	<code>D.read_digital()==1:</code>	
4	pi	n1.write_digital(1)	
5 6	else:		
6	pi	n1.write_digital(0)	

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, then HC-SR501 module is initialized for about one minute. After initialization, when someone is moving in its detection range, the LED will light up; Otherwise it will not respond. Two potentiometers can adjust the detection distance and Induction block time.

The following is the program code:

1	<pre>from microbit import *</pre>
2	while True:
3	<pre>if pin0.read_digital()==1:</pre>
4	<pre>pin1.write_digital(1)</pre>
5	else:
6	<pre>pin1.write_digital(0)</pre>

If human movement is detected, the module will output high level. If not, the module will always output low level. According to the read level of the P1 pin, the P0 pin also outputs the same level to control the LED.

if pin0.read_digital()==1:
 pin1.write_digital(1)
else:
 pin1.write_digital(0)

Chapter 27 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04.

Project 27.1 Ultrasonic Ranging

In this project, we use HC-SR04 ultrasonic module to measure the distance between the module and the obstacle in front of it and display it on LCD screen.

Component list

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will reflect when they encounter any obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted to when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave's journey from being transmitted to being received. Because the speed of sound in air is a constant, and is about v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2.

The HC-SR04 Ultrasonic Ranging Module integrates a both an ultrasonic transmitter and a receiver. The transmitter is used to convert electrical signals (electrical energy) into high frequency (beyond human hearing) sound waves (mechanical energy) and the function of the receiver is opposite of this. The picture and the diagram of the HC SR04 Ultrasonic Ranging Module are shown below:

Pin description:

VCC	power supply pin
Trig	trigger pin
Echo	Echo pin
GND	GND

Technical specs:

Working voltage: 5V

Minimum measured distance: 2cm

Working current: 12mA

Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to transmit ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the returned ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of high level in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This is done constantly.

Distance = Echo time x sound velocity / 2.

Circuit

File name

Block code

Open MakeCode first. Import the .hex file. The path is as below:

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit. The LCD screen will show the distance between the obstacle and the ultrasonic module in CM.

Initialize LCD.

on start	+				
LCD initialize w	vith Ad	dress	0	+	
	+	+	+	+	

The distance of obstacles measured by the ultrasonic module will be assigned to the variable distance, and then displayed on LCD. LCD refreshes every 1 second.

clear LCD	• +	+	+ +	+	+	+
show strin	g "Dist	ance i	is:" at	x 0	y e	
			ping	trig P	1 🔹	
set dist	ance 🔻	to	echo	P0 🔻		
			unit	cm 🔻		
show numbe	r dist	ance 🔻	at x	12 y	0	+
pause (ms)	1000 -		+ +	+	+	+

Reference

Block	Function
ping trig P0 ♥ echo P0 ♥ unit µs ♥	It can return the distance of obstacles detected by sensor.

Extensions

If you want to import the ultrasonic module expansion block into the new project, follow the steps below to add it.

Python code

Open the .py file with Mu. Code, the path is as below:

open	the py me wi			•				
F	ile type			File	name			
F	Python file	/Projects/Py	thonCode/27.1	_UltrasonicR	anging	Ultrasonic	Ranging.	ру
After	the code is l	loaded, as shown	below, impor	t the "I2C_L	.CD1602_Cla	ss.py" file to	micro:bit	before
downl	oading the co	de. (How to impor	t?)					
P Mu 1.	.0.2 - UltrasonicRangin	ід.ру)				_	□ ×
Mode		ad Save Flash	Files REPL	Plotter Zoo	m-in Zoom-out	Theme Check) ? Help	Quit
Ultrasoni	from micro	hit import +						
2	from T2C L	CD1602 Class im	nort *					
2	from time	import sleep us	ticks us					
4	def getdis	tance():	, erens_us					
5	distan	ce=0						
6	pin1.w	rite_digital(1)						
7	sleep_u	us(15)						
8	pin1.w	rite_digital(0)						
9	while	pin0.read_digit	al() == 0:					
10	pa	ss						
11	if pin	0.read_digital() == 1:					
12	ts	= ticks_us()						
13	wh	ile pin0.read_d	igital() ==	1:				
14		pass						
15	te	= ticks_us()						
16	tc	= te - ts						
17	print(te,ts)							
18	anstance = $(TC*1/0)*0.0001$							
19	return	distance						
20	led = TOC	(0)						
21	ubile True	·						
22	distance	· -round(getdista	nce())					
23								
25	lcd.puts	("Distance is:"	.0.0)					
26	lcd.puts	(str(distance).	12.0)					
27	sleep(10	00)	.,-,					

After importing the I2C_LCD1602_Class.py file, check the connection of the circuit and verify it correct. After downloading the code into micro:bit, you can see that the LCD screen will show the distance between the obstacle and the ultrasonic module. The unit is CM.

The following is the program code:

1	<pre>from microbit import *</pre>
2	<pre>from I2C_LCD1602_Class import *</pre>
3	<pre>from time import sleep_us, ticks_us</pre>
4	<pre>def getdistance():</pre>
5	distance=0
6	<pre>pin1.write_digital(1)</pre>
7	sleep_us(15)
8	<pre>pin1.write_digital(0)</pre>
9	<pre>while pin0.read_digital() == 0:</pre>
10	pass
11	<pre>if pin0.read_digital() == 1:</pre>
12	$ts = ticks_us()$
13	<pre>while pin0.read_digital() == 1:</pre>
14	pass
15	te = ticks_us()
16	tc = te - ts
17	<pre>print(te, ts)</pre>
18	distance = (tc*170)*0.0001
19	return distance
20	
21	$lcd = I2C_{LCD1602}(0x27)$
22	while True:
23	distance=round(getdistance())
24	lcd.clear()
25	<pre>lcd.puts("Distance is:",0,0)</pre>
26	<pre>lcd.puts(str(distance), 12, 0)</pre>
27	sleep(1000)

The custom getdistance() function is used to get the distance between the obstacle and the ultrasonic module. The unit of return value is CM.

def	getdistance():
	distance=0
	<pre>pin1.write_digital(1)</pre>
	sleep_us(15)
	<pre>pin1.write_digital(0)</pre>
	<pre>while pin0.read_digital() == 0:</pre>
	pass
	<pre>if pin0.read_digital() == 1:</pre>
	ts = ticks_us()
	<pre>while pin0.read_digital() == 1:</pre>
	pass
	<pre>te = ticks_us()</pre>
	tc = te - ts
	<pre>print(te, ts)</pre>
	distance = (tc*170)*0.0001
	return distance

Create the object lcd of I2C_LCD1602 class, input I2C address 0x27, call getdistance() function, get the distance of the obstacle to the ultrasonic module, assign it to the distance variable, and then display the value of the distance variable on the LCD.

```
lcd = I2C_LCD1602(0x27)
while True:
    distance=round(getdistance())
    lcd.clear()
    lcd.puts("Distance is:",0,0)
    lcd.puts(str(distance),12,0)
    sleep(1000)
```

Reference

getdistance()	
Get the distance from the u	Itrasonic module to the obstacle. The unit is CM.

What's Next?

THANK YOU for participating in this learning experience!

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or questions about the Tutorial or component contents of this Kit, please feel free to contact us: support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a revised version.

If you want to learn more about micro:bit, we have a smart Car named Micro:bit Rover. You can visit our website to purchase. http://www.freenove.com/store.html

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective, innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.