

Welcome

Thank you for choosing Freenove products!

Get Support & Offer Input

You may find somethings missing or broken, or some difficulty to learn the kit.

Freenove provides free and quick support, including but not limited to:

 Quality problems of products

 Problems in using products

 Questions for learning and technology

 Opinions and suggestions

 Ideas and thoughts

If you have any concerns, please send email to us:

support@freenove.com

And suggestions and feedbacks are welcomed. Many customers offered great feedbacks. According to that,

we are keeping updating the kit and the tutorial to make it better. Thank you.

Safety

Pay attention to safety when using and storing this product:

 Do not expose children under 6 years of age to this product. Put it out of their reach.

 Children lack safety ability should use this product under the guardianship of adults.

 This product contains small and sharp parts. Do not swallow, prick and scratch to avoid injury.

 This product contains conductive parts. Do not hold them to touch power supply and other circuits.

 Some parts will rotate or move when it works. Do not touch them to avoid being bruised or scratched.

 The wrong operation may cause overheat. Do not touch and disconnect the power supply immediately.

 Operate in accordance with the requirements of the tutorial. Otherwise, the parts may be damaged.

 Store the product in a dry place and avoid direct sunlight.

 Turn off the power of the circuit before leaving.

mailto:support@freenove.com

About

Freenove provides open source electronic products and services.

Freenove is committed to helping customers learn programming and electronic knowledge, quickly realize

their creative ideas and product prototypes and launching innovative products. Our services include:

 Kits of robots, smart cars and drones

 Kits for learning Arduino, Raspberry Pi and micro:bit

 Electronic components and modules, tools

 Product customization service

You can learn more about us or get our latest information through our website:

http://www.freenove.com

Copyright

All the files we provided are released under Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Unported License. You can find a copy of the license in the folder.

This means you can use them on your own derived works, in part or completely. But NOT for the purpose of

commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. Cannot be used without

formal permission.

Free your innovation

○R

http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

I Contents

█ www.freenove.com

support@freenove.com █

Contents

Welcome ... I

Contents .. I

Preface .. 1

Micro:bit ... 2

Meet micro:bit .. 2

Features .. 3

Hardware ... 4

Micro:bit GPIO Extension Board 5

Hardware and Feature ... 5

How to use? .. 6

Code & Programming ... 8

Quick Start ... 8

MakeCode ... 12

Quick Download .. 13

Import Code.. 15

Python ... 17

Chapter 1 LED matrix .. 23

Project 1.1 Heartbeat ... 23

Project 1.2 Displaying Number... 29

Project 1.3 Displaying Text ... 33

Project 1.4 Displaying Custom .. 35

Chapter 2 Built-in Button .. 38

Project 2.1 Button A and B ... 38

Chapter 3 LED ... 42

Project 3.1 Blink ... 42

Chapter 4 Button and LED .. 51

Project 4.1 Control LED by Button .. 52

Project 4.2 Table Lamp .. 58

Chapter 5 LED Bar Graph .. 63

Project 5.1 Flowing Light .. 63

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ II Contents

█ support@freenove.com

Chapter 6 PWM .. 70

Project 6.1 Breathing Light .. 70

Chapter 7 RGBLED ... 77

Project 7.1 Monochromatic Light .. 77

Project 7.2 Multicolored Light .. 84

Chapter 8 Neopixel ... 92

Project 8.1 Rainbow Water Light ... 92

Chapter 9 Buzzer ... 100

Component knowledge ... 100

Project 9.1 Active Buzzer ... 104

Project 9.2 Happy Birthday Melody ... 108

Project 9.3 Custom Melody .. 113

Chapter 10 Serial Communication 117

Project 10.1 Display the Data ... 117

Chapter 11 Magnetometer ... 122

Project 11.1 Display Magnetometer Data .. 122

Project 11.2 Electronic Compass ... 129

Chapter 12 Accelerometer .. 136

Project 12.1 Display Accelerometer Data .. 136

Project 12.2 Gradiometer .. 141

Chapter 13 Potentiometer .. 146

Project 13.1 Potentiometer ... 146

Chapter 14 Potentiometer and LED 154

Project 14.1 Soft Light .. 154

Project 14.2 Multicolored Soft Light .. 158

Project 14.3 Rainbow Light ... 165

Chapter 15 Light Sensor .. 171

Project 15.1 Built-in Light Sensor ... 171

Project 15.2 Night Light ... 176

Chapter 16 Temperature Sensor 183

Project 16.1 Built-in Temperature Sensor ... 183

Project 16.2 Thermistor .. 186

http://www.freenove.com/
mailto:support@freenove.com

III Contents

█ www.freenove.com

support@freenove.com █

Chapter 17 Joystick ... 193

Project 17.1 Displaying Joystick Data .. 193

Project 17.2 Showing Direction ... 199

Chapter 18 74HC595 and LED Bar Graph 206

Project 18.1 Flowing Water Light .. 206

Chapter 19 74HC595 and 7-segment display 214

Project 19.1 7-segment display .. 214

Chapter 20 LCD1602 .. 223

Project 20.1 I2C LCD1602 .. 223

Chapter 21 Motor .. 235

Project 21.1 Relay & Motor .. 235

Project 21.2 Potentiometer & Motor ... 242

Chapter 22 Servo ... 251

Project 22.1 Sweep .. 251

Project 22.2 Knob ... 258

Chapter 23 Stepper Motor ... 262

Project 23.1 Stepper Motor .. 262

Chapter 24 Hygrothermograph 270

Project 24.1 Hygrothermograph ... 270

Chapter 25 Matrix Keypad .. 281

Project 25.1 Matrix Keypad ... 281

Project 25.2 Countdown Timer .. 291

Chapter 26 Infrared Motion Sensor 300

Project 26.1 Sense Light ... 300

Chapter 27 Ultrasonic Ranging 305

Project 27.1 Ultrasonic Ranging .. 305

What's Next? ... 316

http://www.freenove.com/
mailto:support@freenove.com

1 Preface

█ www.freenove.com

support@freenove.com █

Preface

Do you want to learn programming?

Nowadays, Program is developed into the younger age group, and everyone programming is a trend. From

Arduino and Raspberry Pi to micro:bit, simple graphical programming makes programming for kids possible.

Maybe you haven't heard of them, it doesn't matter. With this product and the tutorial, you can easily

complete a programming project and experience the fun as a Maker.

Micro:bit is a powerful and simple development board. Even if you’ve never programmed before, its simple

graphical programming interface allows you to master it easily. It doesn’t require any professional

programming software; just simply a browser is enough to program it. So, no matter your computer system

is Windows, Linux or Mac, you can program it. And you can also program it with Python.

It attracts a lot of fans in the world who are keen to exploration, innovation and DIY and have contributed a

great number of high-quality open-source code, circuit and rich knowledge base. So we can realize our own

creativity more efficiently by using these free resource. Of course, you can also contribute your own strength

to the resource.

With Micro:bit, we can make a lot of projects and by adding kits to breadboard, we can carry out more

interesting projects like ultrasonic ranging, gravity control, playing music, etc.

In each learning chapter of this tutorial, we provide program source code with detailed program explanations

and burnable binaries, so that you can understand the meaning of each section of program.

Additionally, if you have any difficulties or questions about this tutorial and the kit, you can always ask us for

quick and free technical support.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 2 Micro:bit

█ support@freenove.com

Micro:bit

This chapter is the Start Point in the journey to build and explore Micro:bit and Micro:Rover electronic projects.

Meet micro:bit

The BBC micro:bit is a pocket-size, programmable micro-computer that can be used for all sorts of cool

creations, from robots to musical instruments – the possibilities are infinite.

For more contents, please refer to:

https://microbit.org/guide/

http://www.freenove.com/
mailto:support@freenove.com
https://microbit.org/guide/

3 Micro:bit

█ www.freenove.com

support@freenove.com █

Features

Your micro:bit has the following physical features:

 25 individual programmable LEDs

 2 programmable buttons

 Physical connection pins

 Light and temperature sensors

 Motion sensors (accelerometer and compass)

 Wireless Communication, via Radio and Bluetooth

 USB interface

For more details, please refer to:

https://microbit.org/guide/features/

http://www.freenove.com/
mailto:support@freenove.com
https://microbit.org/guide/features/

www.freenove.com █ 4 Micro:bit

█ support@freenove.com

Hardware

It is not required for beginners to master this section, but a brief understanding is necessary. However, if you

want to be a developer, hardware information will be very helpful. Detailed hardware information about

micro:bit can be found here: https://tech.microbit.org/hardware/.

First, get to know the micro:bit GPIO.

GPIO

GPIO, namely General Purpose Input/output Pins, is an important part of micro:bit for connecting external

devices. All sensors and devices on Rover communicate with each other through micro:bit GPIO. The following

is the GPIO serial number and function diagram of micro:bit:

http://www.freenove.com/
mailto:support@freenove.com
https://tech.microbit.org/hardware/

5 Micro:bit GPIO Extension Board

█ www.freenove.com

support@freenove.com █

Micro:bit GPIO Extension Board

Hardware and Feature

Micro:bit GPIO Extension Board is shown as below:

Micro:bit GPIO Extension Board is connected to micro:bit board via a slot with its GPIO connected to

micro:bit’s GPIO. In addition, there are also 5V and VIN(9V) IO port on the extension board to meet

requirement of more devices.

5V voltage

indicator
3.3V

voltage

indicator

DC power

USB

port to

micro:bit

Micro

USB port

to PC

Micro:bit

slot

GPIO

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 6 Micro:bit GPIO Extension Board

█ support@freenove.com

How to use?

If external device doesn’t require voltage of 5V and 9V, you can use the following wiring.

If external device uses 5v voltage, but power needed is not large, you can use the following wiring.

Program download side

Program

download

side

There is no

power in 5V

and VIN port

5V with power

VIN with no power

http://www.freenove.com/
mailto:support@freenove.com

7 Micro:bit GPIO Extension Board

█ www.freenove.com

support@freenove.com █

If external device uses 5v voltage, but power needed is large, you can use the following wiring.

Program

download

side

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 8 Code & Programming

█ support@freenove.com

Code & Programming

Quick Start

This section describes how to write programs for micro:bit and how to download them to micro:bit. There are

very detailed tutorials on the official website. You can refer to: Https://microbit.org/guide/quick/.

Step 1: Connecting Micro:bit

Connect the micro:bit to your computer via a micro USB cable. Macs, PCs, Chromebooks and Linux systems

(including Raspberry Pi) are all supported.

http://www.freenove.com/
mailto:support@freenove.com
https://microbit.org/guide/quick/

9 Code & Programming

█ www.freenove.com

support@freenove.com █

Step 2: Write Program

Visit https://makecode.microbit.org/. Then click "New Project" and start programming.

If your computer has Windows 10 operating system, you can also use Windows 10 App for programming,

which is exactly the same as programming on browsers. Get windows 10 App(Click).

http://www.freenove.com/
mailto:support@freenove.com
https://makecode.microbit.org/
https://www.microsoft.com/zh-cn/p/makecode-for-micro-bit/9pjc7sv48lcx?ocid=badgep&rtc=1#activetab=pivot:overviewtab

www.freenove.com █ 10 Code & Programming

█ support@freenove.com

Write your first micro:bit code. For example, drag and drop some blocks and try your program on the

Simulator in the MakeCode Editor, like in the image below that shows how to program a Flashing Heart.

Here is a demo video: https://microbit.org/images/quickstart/makecode-

heart.mp4

MakeCode will be further introduced in next section.

http://www.freenove.com/
mailto:support@freenove.com
https://microbit.org/images/quickstart/makecode-heart.mp4
https://microbit.org/images/quickstart/makecode-heart.mp4

11 Code & Programming

█ www.freenove.com

support@freenove.com █

Step 3: Flashing Code to your Micro:bit

The process of transferring the .HEX file to the BBC micro:bit is called flashing.

If you write program using Windows 10 App, you just need to click the “Download” button, then the program

will be downloaded directly to micro:bit without any other actions.

If you write program using browser, please follow steps below:

Click the Download button in the editor. This will download a 'hex' file, which is a compact format of your

program that your micro:bit can read. Once the hex file has been downloaded, copy it to your micro:bit just

like copying a file to a USB drive. On Windows you can right click and choose "Send to→MICROBIT."

Step 4: Run the Program

The micro:bit will pause and the yellow LED on the back of the micro:bit will blink while your code is flashed.

Once that's finished the code will run automatically! The micro:bit can only run one program at a time - every

time you drag-and-drop a hex file onto the device over USB it will erase the current program and replace it

with the new one.

Warning

The MICROBIT drive will automatically eject and reconnect each time you program it, but your hex file

will be gone. The micro:bit can only receive hex files and won't store anything else!

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 12 Code & Programming

█ support@freenove.com

 MakeCode

Open web version of MakeCode or windows 10 app version of MakeCode, which can be downloaded on

Microsoft store.

https://makecode.microbit.org/

Click “New Project”, MakeCode editor is as below:

In the code area, there are two fixed blocks “on start” and “forever”.
The code in the “on start” block will be executed only once after power-on or reset. And the code in “

forever” block will be executed circularly.

Settings

Graphic code

and text code

switch
Code editing area

Code library

Simulatorlator

Code Download Button

Project name

http://www.freenove.com/
mailto:support@freenove.com
https://makecode.microbit.org/

13 Code & Programming

█ www.freenove.com

support@freenove.com █

Quick Download

As mentioned earlier, if you use Windows 10 App of MakeCode (recommended), you can quickly download

the code to micro:bit by clicking the download button. Using browser version of MakeCode may require

more steps.

If you use browser version of MakeCode on Google Chrome 65+ for platform Android, Chrome OS, Linux,

macOS and Windows 10, you can also download file quickly.

Here we use webUSB feature of Chrome, which allows web pages to access your USB hardware devices. We

will complete the connection and pairing of the micro:bit device with the webpage in the following steps.

Pair device

Connect your computer and Micro:bit with a USB cable.

Click the gear menu in the top right corner and then click on "Pair device".

Then continue to click “Pair device” button.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 14 Code & Programming

█ support@freenove.com

Select device on the pop-up window and click “Connect” button. If there are no devices shown on the pop-

up window, please refer to following content:

https://makecode.microbit.org/device/usb/webusb/troubleshoot

We have save the page as a file “Troubleshooting downloads with WebUSB - Microsoft MakeCode.pdf”.

You can read it directly in the folder of this tutorial.

And the file “Firmware microbit.pdf” introduces how to update firmware of micro:bit. Its content come from:

https://microbit.org/guide/firmware/

After the connection succeeds, click the Download button and the program will be downloaded directly to

Micro: bit.

http://www.freenove.com/
mailto:support@freenove.com
https://makecode.microbit.org/device/usb/webusb/troubleshoot
https://microbit.org/guide/firmware/

15 Code & Programming

█ www.freenove.com

support@freenove.com █

Import Code

We provide hex file (project files) for each project, which contains all the contents of the project and can be
imported directly. You can also complete the code of project manually. If you choose to complete the code
by dragging code block, you may need to add necessary extensions.
As for simple projects, it is recommended to complete the project by dragging code block.

As for complicated projects, it is recommended to complete the project by importing Hex code file.

Next, we will take “Heartbeat” project as an example to introduce how to load code.

Open web version of makecode or windows 10 app version of MakeCode.

Click “Import” button on the right of HOME page.

In the pop-up dialog box, click "Import File".

http://www.freenove.com/
mailto:support@freenove.com
https://makecode.microbit.org/

www.freenove.com █ 16 Code & Programming

█ support@freenove.com

Select file“.. Projects/BlockCode/01.1_Heartbeat/Heartbeat.hex”. Then click “Go ahead!”

A few seconds later, the project is loaded successfully.

http://www.freenove.com/
mailto:support@freenove.com

17 Code & Programming

█ www.freenove.com

support@freenove.com █

Python

If you are not interested in python, you can skip this section.

Micro:bit can be programmed in Python. Since micro:bit is a microcontroller, the hardware difference makes

it not support pure Python. Here we use MicroPython, which is specially designed for micro:bit.

MicroPython is a lean and efficient implementation of the Python 3 programming language that includes a

small subset of the Python standard library and is optimized to run on microcontrollers and in constrained

environments.

We designed block code and Python code with similar function for each project.

There are two kinds of python editors for micro:bit, web version and software.

It is highly recommended to use software Mu as a Python educator.

Mu. (https://codewith.mu/en/download)

Next, we will introduce Mu.

Mu

Mu is a Python code editor for beginner programmers based on extensive feedback given by teachers and

learners.

Official website: https://codewith.mu/

You can download it here: https://codewith.mu/en/download

Download and install it.

And you will see the following interface when opening it.

Click the Mode button in the menu bar and select "BBC micro:bit" in the pop-up dialog box. Click "OK".

http://www.freenove.com/
mailto:support@freenove.com
https://codewith.mu/en/download
https://codewith.mu/
https://codewith.mu/en/download

www.freenove.com █ 18 Code & Programming

█ support@freenove.com

Import the .hex file. The path is as below:

File type Path File name

Python file ../project/1.1.Heartbeat Heartbeat.py

Successful loading is shown below.

You can also type the code by yourself.

Use the micro USB cable to connect micro:bit and PC, and click the Flash button to download the program

into micro:bit.

http://www.freenove.com/
mailto:support@freenove.com

19 Code & Programming

█ www.freenove.com

support@freenove.com █

If there are errors in your code, you may be able to successfully download it to micro:bit, but it will not work

properly.

For example, the function sleep() was written as sleeps() in the following illustration. Click the button and the

code can be uploaded to Micro:bit successfully. However, after the downloading completes, LED matrix

prompts some error information and the number of the wrong line.

Click the “REPL” button and press the reset button (the button on the back, not A, B) on micro:bit. The error

message will be displayed in the REPL box, as shown below:

Click REPL again, you will close REPL mode. And then you can flash new code.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 20 Code & Programming

█ support@freenove.com

To ensure the code is correct, after completing the code, click the "Check" button to check the code for errors.

As shown below, click the “Check” button. Then Mu will indicate the error of the code.

Correct the code according to the error prompt. Then click the "Check" button again, Mu displays no error

on the bar below.

http://www.freenove.com/
mailto:support@freenove.com

21 Code & Programming

█ www.freenove.com

support@freenove.com █

Import necessary Python file into micro:bit

In the code of this tutorial, the LCD1602 module and DHT11 module are used, so it is necessary to import

"I2C_LCD1602_Class.py" and "DHT11_RW.py" into the micro:bit. You can skip this section if you don’t use them.

When you need, you can come back to import them.

The import method is as follows:

Search on the C drive and find the "mu_code" folder.

Double click on "mu_code" to enter the folder.

Copy “I2C_LCD1602_Class.py” and “DHT11_RW.py” from following path into “mu_code” directory.

File type Path File name

Python file .. /Projects/PythonLibrary I2C_LCD1602_Class.py DHT11_RW.py

After pasting successfully, you can see them as below:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 22 Code & Programming

█ support@freenove.com

Open the Mu software, click "Files". Here we take "I2C_LCD1602_Class.py" as an example, drag

"I2C_LCD1602_Class.py" into micro:bit.

After importing successfully, you will see it on the left.

The import method of "DHT11_RW.py" is the same as described above. You just need to import the one you

need to use.

Note, after you upload other file into micro:bit, the original content will be covered. You need to import

it next time you use it.

Select it and keep pressing with left mouse button, drag it to left box.

http://www.freenove.com/
mailto:support@freenove.com

23 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

Chapter 1 LED matrix

The micro:bit integrates a 5x5 LED matrix, which is used as a display to display numbers, text, or simple images,

which is useful and interesting.

Project 1.1 Heartbeat

This project uses a pattern built in MakeCode to make a heartbeat animation.

Component List

micro:bit x1

micro USB cable x1

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 24 Chapter 1 LED matrix

█ support@freenove.com

Block code

Open the MakeCode for the web version or MakeCode for the win10 version. Click on "New Project"

http://www.freenove.com/
mailto:support@freenove.com

25 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

Click basic in the list on the left, select the desired code block, and drag it into the right code editing area.

Right click the mouse and select Duplicate to duplicate the code block.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 26 Chapter 1 LED matrix

█ support@freenove.com

If you want to delete the block, you can right click on the block and select “Delete Block”. You can also drag

it to left to delete it.

On the second block, click on the drop-down triangle next to the heart-shaped pattern on the block to display

all the optional built-in patterns, select the second pattern, a small heart shape.

Click on the heart to

see other patterns

http://www.freenove.com/
mailto:support@freenove.com

27 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

This completes the block code thie project.

Download the program to the microbit, the LED matrix on the micro:bit will continue to display a large heart-

shaped pattern and a small heart-shaped pattern, just like heartbeating.

If you did not master downloading, please refer to contents (How to download? How to quick download?).

Reference

Block Function

Shows the selected icon on the LED screen

Python Code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/01.1_Heartbeat Heartbeat.py

After loading successfully, the code is shown below:

Download the program to the microbit, theLED matrix on the micro:bit will continue to display a large heart-

shaped pattern and a small heart-shaped pattern, just like heartbeating.

The following is the program code:

1

2

3

4

5

6

from microbit import *

while True:

 display.show(Image.HEART)

 sleep(1000)

 display.show(Image.HEART_SMALL)

 sleep(1000)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 28 Chapter 1 LED matrix

█ support@freenove.com

Python language is an interpreted language that is executed sequentially. In the code of this project, the

micro:bit module is first imported, and then in a infinite loop statement, a large heart pattern and a small

heart pattern are alternately displayed.

Next, we will explain the code line by line.

 from microbit import *

Import everything in the microbit module, including functions, classes, variables, etc. You can also use import

microbit directly. If you do this, you need to add "microbit." when you call the contents of this module in the

program.

 while True:

An infinite loop that will be executed circularly by microbit constantly.

 display.show(Image.HEART)

Display heart pattern on LED matrix.

 sleep(1000)

Delay for one second.

 display.show(Image.HEART)

sleep(1000)

display.show(Image.HEART_SMALL)

sleep(1000)

Display the heart pattern on the LED matrix for one second, and then display the small heart pattern for

another second.

Reference

from microbit import *

Import everything in the microbit module, including functions, classes, variables, etc. You can use all the

available contents in the micro:bit module in the next program.

while True:

While is a loop statement, if the condition is true, the code in while is executed.

This code with True means that the code in the while is always executed circularly.

display.show(image)

Display the image.

For more details about display,

please refer to: https://microbit-micropython.readthedocs.io/en/latest/display.html

For more details about image,

Please refer to: https://microbit-micropython.readthedocs.io/en/latest/image.html

sleep(t)

Delay for given number of milliseconds, should be positive or 0.

For more details about sleep function, please refer to:

https://microbit-micropython.readthedocs.io/en/latest/utime.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/display.html
https://microbit-micropython.readthedocs.io/en/latest/image.html
https://microbit-micropython.readthedocs.io/en/latest/utime.html

29 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

Project 1.2 Displaying Number

In this project, we will use the LED matrix of the micro:bit to display numbers.

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 30 Chapter 1 LED matrix

█ support@freenove.com

Block code

Open MakeCode first.

In this project, we will import the block code.

Click Import. Then click Import File.

http://www.freenove.com/
mailto:support@freenove.com

31 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

Import the .hex file. The path is as below:

File type Path File name

HEX file ../ Projects/BlockCode/01.2_ShowNumber ShowNumber.hex

After load successfully, the code is shown as below:

Download the code into the micro:bit. After the downloading completes, the micro:bit LED matrix will start to

display the numbers 0, 1, 2, 3, 4...99. Then start again from 0 to 99, so that it will cycle permanently.

In this code, a for loop is used. Each time the loop is executed, the value of the variable index is increased by

1. When the value is greater than 99, the for loop is exited. In the body of the loop, the value of the numeric

index is displayed.

Reference

Block Function

This is a for loop, the number (4) of loops can be changed,

each time the index is incremented by 1. The loop won’t

end until the index is greater than the set value.

Show a number on the LED screen. It will slide left if the

number is more than one digit..

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 32 Chapter 1 LED matrix

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/01.2_ShowNumber ShowNumber.py

After loading successfully, the code is shown as below:

Download the code into the microbit. After the downloading completes, the micro:bit LED matrix will start to

display the numbers 1, 2, 3, 4...100. Then start again from 1 to 100, so that it will repeat endlessly.

The following is the program code:

1

2

3

4

from microbit import *

while True:

 for index in range(0, 100):

 display.scroll(str(index))

The code of this project, in a 0-100 for loop, scrolls through the cyclic number index, which is incremented

by 1.

Reference

display.scroll(value)

Scrolls value horizontally on the display. If value is an integer or float it is first converted to a string using

str().

For more information, please refer to: https://microbit-micropython.readthedocs.io/en/latest/utime.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/utime.html

33 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

Project 1.3 Displaying Text

This project uses the LED matrix of micro:bit to display text (ASCII).

Circuit

Connect micro:bit and PC via micro USB cable.

Hardware connection

Block code

Open MakeCode first.Import the .hex file. The path is as below:(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/01.3_ShowText ShowText.hex

After loading successfully, the code is shown as below:

Download the code into the microbit, the micro:bit LED matrix will scroll from left to right to display "Hello,

Freenove!"

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 34 Chapter 1 LED matrix

█ support@freenove.com

Reference

Block Function

Displays a string on the LED screen. It will scroll to left if it’s

beyond the screen.

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/01.3_ShowText ShowText.py

After loading successfully, the code is shown as below:

Download the code into the microbit, the micro:bit LED matrix will scroll from left to right to display "Hello,

Freenove!"

The following is the program code:

1

2

3

from microbit import *

while True:

 display.scroll("Hello, Freenove!")

This code scrolls through the text "Hello, Freenove!" in a while loop.

http://www.freenove.com/
mailto:support@freenove.com

35 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

Project 1.4 Displaying Custom

This project uses a micro:bit LED matrix to display a custom pattern.

Circuit

Connect micro:bit and PC via micro USB cable.

Hardware connection

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/01.4_ShowCustom ShowCustom.hex

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct.. Then download the code into the microbit, and the

square pattern shown above will appear on the LED matrix of the micro:bit.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 36 Chapter 1 LED matrix

█ support@freenove.com

Reference

Block Function

Shows a picture on the LED screen.

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/01.4_ShowCustom ShowCustom.py

After loading successfully, the code is shown as below:

Download the code into the microbit, and a square pattern will appear on the micro:bit LED matrix.

(How to download?)

http://www.freenove.com/
mailto:support@freenove.com

37 Chapter 1 LED matrix

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

from microbit import *

img = Image("00000:"

 "09990:"

 "09090:"

 "09990:"

 "00000")

while True:

 display.show(img)

Create an image in the code and define it as img, then display the defined image in a while loop. As shown

in the code below, the parameters in Image consist of 5 strings. Each line of characters corresponds to a row

of LEDs. Each digit represents the brightness of an LED. The value ranges from 0 to 9, the larger the number,

the brighter the LED.

1

2

3

4

5

img = Image("00000:"

 "09990:"

 "09090:"

 "09990:"

 "00000")

Reference

img = Image("00000:"

 "09990:"

 "09090:"

 "09990:"

 "00000")

Create an image of LED, and set brightness of LED.

For more information, please refer to:

https://microbit-micropython.readthedocs.io/en/latest/image.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/image.html

www.freenove.com █ 38 Chapter 2 Built-in Button

█ support@freenove.com

Chapter 2 Built-in Button

Keyboards or buttons are important tools for human-computer interaction. We often use keyboards to enter

text, type commands, control devices, etc. Two programmable buttons A and B are integrated on the micro:bit

to easily control the micro:bit to make actions.

Project 2.1 Button A and B

This project uses micro:bit integrated buttons A and B. When different buttons are pressed, micro:bit displays

different patterns.

Circuit

Connect micro:bit and PC via micro USB cable.

Hardware connection

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/02.1_BuiltInButton BuiltInButton.hex

After loading successfully, the code is shown as below:

http://www.freenove.com/
mailto:support@freenove.com

39 Chapter 2 Built-in Button

█ www.freenove.com

support@freenove.com █

Download the code into micro:bit. When button A is pressed, the micro:bit LED matrix will display an arrow

pointing to button A. When button B is pressed, the micro:bit LED matrix will display an arrow pointing to

button B. When the buttons A and B are pressed at the same time, the micro:bit LED matrix will display a

check mark. When no button is pressed, the micro:bit LED matrix displays a cross.

Reference

Block Function

Check whether a button is pressed at the moment. The

micro:bit has two buttons: button A and button B.

This handler works when button A or B is pressed, or A

and B together.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 40 Chapter 2 Built-in Button

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/02.1_BuiltInButton BuiltInButton

After loading successfully, the code is shown as below:

Download the code into micro:bit. When button A is pressed, the micro:bit LED matrix will display an arrow

pointing to button A. When button B is pressed, the micro:bit LED matrix will display a an arrow pointing to

button B.When the buttons A and B are pressed at the same time, the micro:bit LED matrix will display a check

mark. When no button is pressed, the micro:bit LED matrix displays a cross.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

from microbit import *

while True:

 if button_a.is_pressed() and button_b.is_pressed():

 display.show(Image.YES)

 elif button_a.is_pressed():

 display.show(Image.ARROW_W)

 elif button_b.is_pressed():

 display.show(Image.ARROW_E)

 else:

 display.show(Image.NO)

http://www.freenove.com/
mailto:support@freenove.com

41 Chapter 2 Built-in Button

█ www.freenove.com

support@freenove.com █

Use the if-elif-else statement to determine when the button is pressed. First, when the buttons A and B are

pressed at the same time, a check mark is displayed.

 if button_a.is_pressed() and button_b.is_pressed():

 display.show(Image.YES)

Then, determine in turn if the buttons A or B is pressed seperately, and the case where no button is pressed.

 elif button_a.is_pressed():

 display.show(Image.ARROW_W)

 elif button_b.is_pressed():

 display.show(Image.ARROW_E)

 else:

 display.show(Image.NO)

Note that it is necessary to first determine if buttons A and B are pressed at the same time. If-elif-else

statement will make the micro:bit execute only one situation. If the state with two buttoon pressed is placed

in last, the result of pressing A or B will appear first, then the statement will end, and then sentence met the

state with two button pressed will never be executed.

Reference

is_pressed()

Returns True if the specified button is currently being pressed, and False otherwise.

For more information, please refer to https://microbit-micropython.readthedocs.io/en/latest/button.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/button.html

www.freenove.com █ 42 Chapter 3 LED

█ support@freenove.com

Chapter 3 LED

This section we will learn how to control external LEDs.

Project 3.1 Blink

This project uses micro:bit to control LED blinking.

Component List

Microbit x1

Expansion board x1

Breakboard x1

USB cable x1

Jumper F/M x2

Resistor 220Ω x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

43 Chapter 3 LED

█ www.freenove.com

support@freenove.com █

Circuit Knowledge

Current

The unit of current (I) is ampere (A). 1A=1000mA, 1mA=1000μA.

Closed loop consisting of electronic components is necessary for current.

In the figure below: the left is a loop circuit, so current flows through the circuit. The right is not a loop

circuit, so there is no current.

Resistor

Resistors use Ohms (Ω) as the unit of measurement of their resistance (R). 1MΩ=1000kΩ, 1kΩ=1000Ω.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic

circuit.

On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the

presence of a resistor in a circuit diagram or schematic.

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details
of resistor color codes, please refer to the card in the kit package.
With a fixed voltage, there will be less current output with greater resistance added to the circuit. The
relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as
Ohm’s Law where I = Current, V = Voltage and R = Resistance. Knowing the values of any two of these
allows you to solve the value of the third.
In the following diagram, the current through R1 is: I=U/R=5V/10kΩ=0.0005A=0.5mA.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 44 Chapter 3 LED

█ support@freenove.com

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a
metal object or bare wire) this is a Short and results in high current that may damage the power supply
and electronic components.
Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which
direction you insert them into a circuit, it will work the same)

Analog signal and Digital signal

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-
time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A
familiar example of an Analog Signal would be how the temperature throughout the day is continuously
changing and could not suddenly change instantaneously from 0℃ to 10℃. However, Digital Signals can
instantaneously change in value. This change is expressed in numbers as 1 and 0 (the basis of binary code).
Their differences can more easily be seen when compared when graphed as below.

Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.
In practical applications, we often use binary as the digital signal, that is a series of 0’s and 1’s. Since a binary
signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals
can be converted into the other.

Low level and high level

In circuit, the form of binary (0 and 1) is presented as low level and high level.
Low level is generally equal to ground voltage (0V). High level is generally equal to the operating voltage

of components.

The low level of Micro:bit is 0V and high level is 3.3V, as shown below. When IO port on Micro:bit outputs

high level, low-power components can be directly driven, like LED.

http://www.freenove.com/
mailto:support@freenove.com

45 Chapter 3 LED

█ www.freenove.com

support@freenove.com █

Component knowledge

Let us learn about the basic features of components to use them better.

Jumper

Jumper is a kind of wire, which is designed to connect the components together by inserting its two
terminals.

Jumpers have male end (pin) and female end (slot), so jumpers can be divided into the following 3 types.

Jumper M/M

Jumper F/F

Jumper F/M

Breadboard

There are many small holes on breadboard to connect Jumper.
Some small holes are connected inside breadboard. Here we have a small breadboard as an example of

how the rows of holes (sockets) are electrically attached. The left picture shows the ways the pins have

shared electrical connection and the right picture shows the actual internal metal, which connect these

rows electrically.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 46 Chapter 3 LED

█ support@freenove.com

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles.

An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power

source and the shorter pin is connected to the negative (-) negative output also referred to as Ground (GND).

This type of component is known as “Polar” (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode

is higher than its negative electrode and there is a narrow range of operating voltage for most all common

diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burn out.

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A

resistor with a specified resistance value must be connected in series to the LED you plan to use.

Circuit

When wiring, it is recommended to disconnect all the power supplies in the circuit, and then build the circuit

according to the circuit (micro:bit board cannot be inserted reverse),

LED’s positive pole (long pin) should be connected to resistor while its negative pole (short pin) should

be connected to GND. After the circuit is built and verified correct, use the USB cable to connect the PC

to the micro:bit to power the circuit.

CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and

cause permanent damage to your micro:bit!

http://www.freenove.com/
mailto:support@freenove.com

47 Chapter 3 LED

█ www.freenove.com

support@freenove.com █

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 48 Chapter 3 LED

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/03.1_Blink Blink.hex

After import successfully, the code is shown as below:

Download the code into the micro:bit and the LED on the breadboard will begin to blink.

In the code, write 1 to the P0 port to turn ON the LED. After waiting for 500ms, write 0 to the P0 port to turn

OFF the LED. After waiting for 500ms, the LED will be turned ON again. Repeat the loop, then LED will start

blinking.

http://www.freenove.com/
mailto:support@freenove.com

49 Chapter 3 LED

█ www.freenove.com

support@freenove.com █

Reference

Block Function

Pause the program for the number of milliseconds you set. You

can use this function to slow your program down.

Write a digital (0 or 1) signal to a pin on the micro:bit board.

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/03.1_Blink Blink.py

After loading successfully, the code is shown as below:

Download the code into micro:bit and the LED on the breadboard will start to blink.

 (How to download?)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 50 Chapter 3 LED

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

from microbit import *

while True:

 pin0.write_digital(1)

 sleep(100)

 pin0.write_digital(0)

 sleep(100)

In the code, write 1 to the P0 port to turn ON the LED. After waiting for 500ms, write 0 to the P0 port to turn

OFF the LED. After waiting for 500ms, the LED will be turned ON again. Repeat the loop, then LED will start

blinking.

Write a high level to pin P0.

 pin0.write_digital(1)

Delay 500ms

 sleep(500)

Then write low level, and then delay 500ms. Repeat actions above.

Reference

pin.write_digital(value)

Set the pin to high if value is 1, or to low, if it is 0.

For more information, please refer to:https://microbit-micropython.readthedocs.io/en/latest/pin.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/pin.html

51 Chapter 4 Button and LED

█ www.freenove.com

support@freenove.com █

Chapter 4 Button and LED

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.

In last section, the LED module was the output part and micro:bit was the control part. In practical applications,

we not only make the LEDs flash, but also make a device sense the surrounding environment, receive

instructions and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Input:

buttons, switches,

sensors and etc.

Control:

RPI, Arduino,

micro:bit,

MCU and etc.

Output:

LED, buzzer,

motor and etc.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 52 Chapter 4 Button and LED

█ support@freenove.com

Project 4.1 Control LED by Button

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our

LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component list

Microbit x1

Expansion board x1

Breakboard x1

USB cable x1

FM x4 MM x1

Resistor

220Ω x1

LED x1

Push Button Switch x1

1kΩ x2

http://www.freenove.com/
mailto:support@freenove.com

53 Chapter 4 Button and LED

█ www.freenove.com

support@freenove.com █

Circuit knowledge

Connection of Push Button Switch

We connect a push button switch directly to the circuit to turn ON or OFF the LED. In digital circuits, we need

to use the push button switch as an input signal. The recommended connection is as follows:

In the above circuit diagram, when the button is not pressed, 3.3V (high level) will be detected by I/O port;
and when the button is pressed, it will be 0V (low level). Resistor R2 here is used to prevent the port from

being set to output high level by accident. Without R2, the port maybe connected directly to the cathode

and cause a short circuit when the button is pressed.

The following diagram shows another connection, in which the level detected by I/O port is opposite to

above diagram, when the button is pressed or not.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 54 Chapter 4 Button and LED

█ support@freenove.com

Circuit

The P0 pin detects the button and the P1 pin controls the LED.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

55 Chapter 4 Button and LED

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file . ../Projects/BlockCode/04.1_ButtonAndLED ButtonAndLED.hex

After import successfully, the code is shown as below:

Download the code into micro:bit. When the button is pressed, the LED will be turned on. When the button

is released, the LED will be turned off.

In the program, read the level of the P0 pin to determine if the button is pressed.

If P0 pin is low level, it indicates that the button is pressed, and make P1 pin output 1, then LED will be turned

ON.

Otherwise, P1 pin outputs 0, and the LED will be turned OFF.

Reference

Block Function

Read a digital (0 or 1) signal from a pin on the micro:bit

board.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 56 Chapter 4 Button and LED

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/04.1_ButtonAndLED ButtonAndLED.py

After loading successfully, the code is shown as below:

Download the code into micro:bit. When the button is pressed, the led will be turned ON. When the button

is released, the led will be turned OFF.

(How to download?)

The following is the program code:

1

2

3

4

5

6

7

from microbit import *

while True:

 buttonState = pin0.read_digital()

 if buttonState == 0:

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

http://www.freenove.com/
mailto:support@freenove.com

57 Chapter 4 Button and LED

█ www.freenove.com

support@freenove.com █

In the program, read the level of the P0 pin, save the read level value in the variable buttonState, and then

determine whether the button is pressed.

 buttonState = pin0.read_digital()

If the read P0 pin is low, it indicates that the button is pressed, and then make P1 pin output 1, so LED will be

turned ON. Otherwise, the P1 pin outputs 0, and the LED will be turned OFF.

 if buttonState == 0:

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

Reference

pin.read_digital()

Return 1 if the pin is high level, and 0 if it’s low.

For more information, please refer to:https://microbit-micropython.readthedocs.io/en/latest/pin.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/pin.html

www.freenove.com █ 58 Chapter 4 Button and LED

█ support@freenove.com

Project 4.2 Table Lamp

In this project, we will make a table lamp. The components and circuits used are exactly the same as the

previous one, but this will function differently: Press the button, the LED will turn ON, and pressing the button

again, the LED turns OFF. The ON switch action is no longer momentary (like a door bell) but remains ON

without needing to continually press on the Button Switch.

Component list

It is same as the previous project.

Circuit knowledge

Debounce for Push Button

When a Momentary Push Button Switch is pressed, it will not change from one state to another state

immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it

stabilizes in a new state too fast for Humans to detect but not for computer microcontrollers. The same is true

when the push button switch is released. This unwanted phenomenon is known as “bounce”.

 Ideal state

 Virtual state

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and

releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the

microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our

solution: to judge the state of the button multiple times. Only when the button state is stable (consistent)

over a period of time, can it indicate that the button is actually in the ON state (being pressed).

This project needs the same components and circuits as we used in the previous section.

http://www.freenove.com/
mailto:support@freenove.com

59 Chapter 4 Button and LED

█ www.freenove.com

support@freenove.com █

Circuit

It is same as the previous section.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/04.2_TableLamp TableLamp.hex

After importing successfully, the code is shown as below:

Download the code to micro:bit, press the button once, the LED turns ON, press the button again, the LED

turns OFF. .

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 60 Chapter 4 Button and LED

█ support@freenove.com

In the program, when it is detected for the first time that the button is pressed, wait for 10ms to detect whether

the button is pressed again, to skip the bounce when the button is pressed. And if the button is still detected

as pressed for the second time, the button is considered to have been pressed and in a steady state. Otherwise,

it is considered to be a bounce and the program will stop detecting..

When it is determined that the key is pressed, change the status value. Status is used to save the state of LED.

And then write the new value of status to the P1 port to control the LED.

After the above operations done, the program will detect whether the button is released. And similarly, it will

first eliminate the bounce of the button.

Reference

Block Function

Use an equal sign to make a variable store the number or

string you set.

http://www.freenove.com/
mailto:support@freenove.com

61 Chapter 4 Button and LED

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/04.2_TableLamp TableLamp.py

After loading successfully, the code is shown as below:

Download the code to micro:bit, press the button once, the LED turns ON; press the button again, the LED

turns OFF.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

from microbit import *

status = 0

while True:

 if pin0.read_digital() == 0:

 sleep(10)

 if pin0.read_digital() == 0:

 if status == 0:

 status = 1

 else:

 status = 0

 pin1.write_digital(status)

 while pin0.read_digital() == 0:

 sleep(10)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 62 Chapter 4 Button and LED

█ support@freenove.com

In the program, when it is detected for the first time that the button is pressed, wait for 10ms to detect whether

the button is pressed again, to eliminate the impact of bounce when the button is pressed. And if the button

is still pressed for the second time, the button is considered to have been pressed and in a steady state.

Otherwise, it is considered to be a bounce and exit this judgment.

 if pin0.read_digital() == 0:

 sleep(10)

 if pin0.read_digital() == 0:

When it is determined that the key is pressed, change the status value. Status is used to save the state of LED.

And then write the new value of status to the P1 port to control the LED.

 if status == 0:

 status = 1

 else:

 status = 0

 pin1.write_digital(status)

After the above operations done, the program will detect whether the button is released. And similarly, it will

first eliminate the bounce of the button.

 while pin0.read_digital() == 0:

 sleep(10)

http://www.freenove.com/
mailto:support@freenove.com

63 Chapter 5 LED Bar Graph

█ www.freenove.com

support@freenove.com █

Chapter 5 LED Bar Graph

We have learned how to control LED blink. Next step, we will learn a new component LED bar graph.

Project 5.1 Flowing Light

In this project, we use LED Bar Graph to make a flowing water light.

Component list

Microbit x1

Expansion board x1

Breakboard x1

Resistor 220Ω x10

Jumper F/M x11

LED bar graph x1

USB cable x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 64 Chapter 5 LED Bar Graph

█ support@freenove.com

Component knowledge

Let us learn about the basic features of components to use and understand them better.

LED Bar Graph

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom

are paired to identify each LED like the single LED used earlier.

http://www.freenove.com/
mailto:support@freenove.com

65 Chapter 5 LED Bar Graph

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

If your project doesn’t work, please rotate LED bar 180°.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 66 Chapter 5 LED Bar Graph

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/05.1_FlowingLight01 FlowingLight01.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify that the circuit is connected correctly, download the code into

micro:bit, after the program is executed, you will see the LED turns ON from left to right, which repeats This

process is repeated to achieve the “movements” of flowing water.

http://www.freenove.com/
mailto:support@freenove.com

67 Chapter 5 LED Bar Graph

█ www.freenove.com

support@freenove.com █

In the code, we need turn OFF the LED screen (which allows the GPIO pin associated with the LED screen

to be reused for other purposes).

Set one pin to high and the rest of 9 pins to low level at a time; Until all the 10 pins are set to high and low

level in turn.

Reference

Block Function

Turns the LED screen on and off (thus allowing you to

re-use the GPIO pins associated with the display for

other purposes).

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 68 Chapter 5 LED Bar Graph

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/05.1_FlowingLight01 FlowingLight01.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify that the circuit is connected correctly, download the code into

micro:bit, after the program is executed, you will see the LED turns ON from left to right, which repeats to

achieve the “movements” of flowing water.

http://www.freenove.com/
mailto:support@freenove.com

69 Chapter 5 LED Bar Graph

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

from microbit import *

display.off()

outPin = [pin0, pin1, pin2, pin3, pin4, pin10, pin6, pin7, pin9, pin8]

while True:

 for p in outPin:

 p.write_digital(1)

 sleep(100)

 p.write_digital(0)

 sleep(100)

In the code, we need to turn OFF the LED screen (which allows the GPIO pin associated with the LED

screen to be reused for other purposes).

 display.off()

Define an array to save the pin variable.

 outPin = [pin0, pin1, pin2, pin3, pin4, pin6, pin7, pin8, pin9, pin10]

Change the level of the currently selected pin every 100ms to implement the effect of flowing water light.

 for p in outPin:

p.write_digital(1)

sleep(100)

p.write_digital(0)

sleep(100)

Reference

display.off()

Use off() to turn OFF the display (thus allowing you to re-use the GPIO pins associated with the display for

other purposes)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 70 Chapter 6 PWM

█ support@freenove.com

Chapter 6 PWM

In this chapter, we will learn how to make a breathing LED.

Project 6.1 Breathing Light

Component list

Microbit x1

Expansion board x1

Breakboard x1

USB cable x1

Jumper F/M x2

Resistor 220Ω x1

LED x1

http://www.freenove.com/
mailto:support@freenove.com

71 Chapter 6 PWM

█ www.freenove.com

support@freenove.com █

Circuit knowledge

At first, let us learn the knowledge how to use the circuit to make LED emit different brightness of light,

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.

Digital processors cannot directly output analog signals. PWM technology makes it very convenient to

achieve this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high

levels and low levels, which alternately last for a while. The total time for each set of high levels and low

levels is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time

of high level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of

pulse duration, or pulse width (PW) to the total period (T) of the waveform.

The longer the output of high levels last, the longer the duty cycle and the higher the corresponding voltage

in the analog signal will be. The following figures show how the analog signal voltages vary between 0V-

5V (high level is 5V) corresponding to the pulse width 0%-100%:

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this

relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 72 Chapter 6 PWM

█ support@freenove.com

Circuit

Schematic Diagram

hardware connection

The pin for the circuit is P0. The long pin (positive) of LED is connected to the resistor, and the short pin

(negative) to ground.

http://www.freenove.com/
mailto:support@freenove.com

73 Chapter 6 PWM

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/06.1_BreathingLight BreathingLight.hex

After import successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

micro:bit. The LED will becomes brighter gradually, and then dimmer and dimmer. This process will be

repeated to achieve the effect of breathing.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 74 Chapter 6 PWM

█ support@freenove.com

P0 outputs PWM signal, from 0 to 500, then from 500 to 0.

Reference

Block Function

Write an analog signal (0 through 1023) to the pin you set.

http://www.freenove.com/
mailto:support@freenove.com

75 Chapter 6 PWM

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/06.1_BreathingLight BreathingLight.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct and download the code into micro:bit, the LED will

becomes brighter gradually, and then dimmer and dimmer. This process will be repeated to achieve the

effect of breathing. (How to download?)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 76 Chapter 6 PWM

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

from microbit import *

while True:

 for i in range(0, 500, 1):

 pin0.write_analog(i)

 sleep(1)

 for i in range(500, 0, -1):

 pin0.write_analog(i)

 sleep(1)

P0 outputs PWM signal, from 0 to 500,

 for i in range(0, 500, 1):

 pin0.write_analog(i)

 sleep(1)

Then from 500 to 0.

 for i in range(500, 0, -1):

 pin0.write_analog(i)

 sleep(1)

Reference

pin.write_analog(value)

Output a PWM signal on the pin, with the duty cycle proportional to the provided value. The value may be

either an integer or a floating point number between 0 (0% duty cycle) and 1023 (100% duty)..

For more information, please refer to:

https://microbit-micropython.readthedocs.io/en/latest/pin.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/pin.html

77 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

Chapter 7 RGBLED

In this chapter, we will learn a new component, RGBLED.

Project 7.1 Monochromatic Light

This project will use RGBLED to show one color.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

RGB_LED x1

Jumper F/M x4

Resistor 220Ω x3

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 78 Chapter 7 RGBLED

█ support@freenove.com

Component knowledge

RGB LED
A RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue light.

In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common which is

the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of a RGB LED

and its electronic symbol are shown below. We can make RGB LED emit various colors of light and brightness

by controlling the 3 Anodes (2, 3 & 4) of the RGB LED

Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as
paints, the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of
light with varied brightness, they can produce almost any color of visible light. Computer screens, single
pixels of cell phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 28*28*28=16777216 (16
million) colors through different combinations of RGB light brightness.

Blue

Magenta

Red Yellow

While

Turquoise

Green

http://www.freenove.com/
mailto:support@freenove.com

79 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

Circuit

This circuit uses pins P2, P1, and P0 to connect the negative electrodes of the RGBLED.

Schematic diagram

Hardware connection

The longest pin of the RGB LED is connected to the power supply 3.3V.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 80 Chapter 7 RGBLED

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below: (how to import project)

File type Path File name

HEX file ../Projects/BlockCode/07.1_RGBLED RGBLED.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

micro:bit, and RGBLED will emit yellow color. RGB value of yellow is (255,255,0).

In this kit, three LEDs of RGB LED share a common anode(+) and their negative pins need to be set to LOW

level to have the RGB LED work. And the value of variables ‘red’, ‘green’, and ‘blue’ need to be converted from

the value ranging from 0-255 to analog signal values ranging from1023-0.

http://www.freenove.com/
mailto:support@freenove.com

81 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

Write the ‘red’,‘green’,‘blue’ to corresponding pins P2, P1, P0.

Reference

Block Function

Convert a value in one number range

to a value in another number range.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 82 Chapter 7 RGBLED

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/07.1_RGBLED RGBLED.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

micro:bit, and RGBLED will emit yellow color. (How to download?)

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

from microbit import *

def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

red=255

green=255

blue=0

red=map(red,0,255,1023,0)

green=map(green,0,255,1023,0)

blue=map(blue,0,255,1023,0)

pin2.write_analog(red)

pin1.write_analog(green)

pin0.write_analog(blue)

A custom map() function is used to convert a value in one range to another range.

 def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

http://www.freenove.com/
mailto:support@freenove.com

83 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

RGB value of yellow is (255,255,0).

 red=255

green=255

blue=0

In this kit, three LEDs of RGB LED share a common anode(+) and their negative pins need to be set to LOW

level to have the RGB LED work. And the value of variables ‘red’, ‘green’, and ‘blue’ need to be converted from

the value ranging from 0-255 to analog signal values ranging from1023-0.

 red=map(red,0,255,1023,0)

green=map(green,0,255,1023,0)

blue=map(blue,0,255,1023,0)

Write the ‘red’, ‘green’, ‘blue’ to corresponding pins P2, P1, P0.

 pin2.write_analog(red)

pin1.write_analog(green)

pin0.write_analog(blue)

Reference

map(value,fromLow,fromHigh,toLow,toHigh)

A custom function that converts a value in a range of numbers to a value in another range of numbers. For

example, map(8,0,10,0,100) returns a value of 80; map(8,0,10,100,0)=20.

map(8,0,10,0,100)=80.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 84 Chapter 7 RGBLED

█ support@freenove.com

Project 7.2 Multicolored Light

In this project, we will use an RGB LED to emit different colors.

Component list

It is same with the previous project.

HSL color

The HSL color mode is another color standard in the industry. It obtains a variety of colors by changing the

three color channels of hue (H), saturation (S), and lightness (L) and superimposing them with each other. This

color mode covers almost all colors that human vision can perceive. It is one of the most widely used color

systems to date.

As shown in the hue circle below, the 0 degree of the hue is R (red) color, 120 degrees is G (green) color, and

240 degrees is B (blue) color. Each angle represents a color. The default saturation (S) takes the maximum

value 100, the brightness (L) takes 50. If the hue angle is changed, the color will be changed. And the HSL

color system can be converted to the RGB color system, to change the color of the LED.

0°

http://www.freenove.com/
mailto:support@freenove.com

85 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

Circuit

It is same with last project.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/07.2_ColorfulLight ColorfulLight.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

the microbit, and RGBLED will emit different colors.

From the knowledge of HSL color, we can know that different hue angles correspond different colors. The

variable index represents hue angle, ranging from 0 to 360.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 86 Chapter 7 RGBLED

█ support@freenove.com

This block is to convert the HSL color system to the RGB color system, return the RGB value corresponding

to the current hue angle, and store the value in the variable RGBColor. For example: hexadecimal RGB value

0xFF0000 means red, FF is the value of the red channel in RGB, and 00 and 00 are the values of the green

and blue channels, respectively.

Assign the value of the lower eight-bit to blue channel, the value of the middle eight-bit to green channel,

and the value of the upper eight-bit to red channel.

In this kit, three LEDs of RGB LED share a common anode (+) and their negative pins need to be set to LOW

level to have the RGB LED work. And the variables ‘red’, ‘green’, and ‘blue’ need to be converted from the

value ranging from 0-255 to analog signal values ranging from1023-0.

Every 10ms, write the ‘red’, ‘green’, ‘blue’ to corresponding pins P2, P1, P0.

http://www.freenove.com/
mailto:support@freenove.com

87 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

Reference

Block Function

This is an extra operator for division. You can find

out how much is left over if one number doesn’t

divide into the other number evenly.

Convert HSL color system to RGB color system, and

return the RGB value corresponding to the current

hue angle. It belongs to Neopixel expansion block.

Extensions

You can import Neopixel expansion block into new project as below:

1, Click “Advanced” to

Expand list.

2, Click “Extension”

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 88 Chapter 7 RGBLED

█ support@freenove.com

3, Search “neopixel”

4, Click this neopixel

It is completed.

http://www.freenove.com/
mailto:support@freenove.com

89 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/07.2_ColorfulLight ColorfulLight.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

the microbit, and RGBLED will emit different colors. (How to download?)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 90 Chapter 7 RGBLED

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

from microbit import *

def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return red,green,blue

while True:

 for i in range(360):

 red,green,blue=HSL_RGB(i)

 red=map(red,0,255,1023,0)

 green=map(green,0,255,1023,0)

 blue=map(blue,0,255,1023,0)

 pin2.write_analog(red)

 pin1.write_analog(green)

 pin0.write_analog(blue)

 sleep(10)

The map() function is used to convert a value in one range to another range.

 def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

http://www.freenove.com/
mailto:support@freenove.com

91 Chapter 7 RGBLED

█ www.freenove.com

support@freenove.com █

The HSL_RGB() function is used to convert the HSL color system to RGB color, and return the RGB value

corresponding to the current hue angle.

 def HSL_RGB (degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return red,green,blue

Repeat 360 times, display the hue angle color corresponding to 0 to 360 degrees, and replace it every 10ms.

 while True:

 for i in range(360):

 red,green,blue=HSL_RGB(i)

 red=map(red,0,255,1023,0)

 green=map(green,0,255,1023,0)

 blue=map(blue,0,255,1023,0)

 pin2.write_analog(red)

 pin1.write_analog(green)

 pin0.write_analog(blue)

 sleep(10)

Reference

HSL_RGB(degree)

Custom function, used to convert HSL color system to RGB color system, return the RGB value

corresponding to the current hue angle, for example: HSL_RGB(0), return red RGB value: red=255, green=0,

blue=0.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 92 Chapter 8 Neopixel

█ support@freenove.com

Chapter 8 Neopixel

In this chapter, we will learn Freenove 8 RGB LED Module

Project 8.1 Rainbow Water Light

This project will achieve rainbow water light.

Component list

Microbit x1

Extension board x1

Jumper F/F x3

USB cable x2

Freenove 8 RGB LED Module x1

http://www.freenove.com/
mailto:support@freenove.com

93 Chapter 8 Neopixel

█ www.freenove.com

support@freenove.com █

Component knowledge

Freenove 8 RGB LED Module

The Freenove 8 RGB LED Module is as below. You can use only one data pin to control the eight LEDs on the

module. As shown below:

And you can also control many modules at the same time. Just connect OUT pin of one module to IN pin of

another module. In such way, you can use one data pin to control 8, 16, 32 … LEDs.

Pin description:

(IN) (OUT)

symbol Function symbol Function

S Input control signal S Output control signal

V Power supply pin, +3.5V~5.5V V Power supply pin, +3.5V~5.5V

G GND G GND

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 94 Chapter 8 Neopixel

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

Connect to

computer

8 RGB LED

Module requires

5V. Pay attention

to the wiring.

http://www.freenove.com/
mailto:support@freenove.com

95 Chapter 8 Neopixel

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/08.1_Neopixel Neopixel.hex

After import successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, download the code into the micro:bit, and then you

can see the rainbow water light.

Set the number of data pins and LEDs at "on start", as well as the type of LED.

In the 0-360 for loop, the hue difference between each two LEDs is 45. When the hue changes, each LED

succeeds the hue of the previous LED. And then the program converts the HSL color system to the RGB color

system, returns the RGB value corresponding to the current hue angle and write the value to LED to achieve

the effect of the rainbow water light.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 96 Chapter 8 Neopixel

█ support@freenove.com

Reference

Block Function

Set the number of data pins and LEDs, as

well as the type of LED.

Set LED color

Turn on LED

http://www.freenove.com/
mailto:support@freenove.com

97 Chapter 8 Neopixel

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/08.1_Neopixel Neopixel.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, confirm that the connection of the circuit is correct, download the code

into the micro:bit, and then you can see the rainbow water light. (How to download?)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 98 Chapter 8 Neopixel

█ support@freenove.com

The following is the code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

from microbit import *

import neopixel

np = neopixel.NeoPixel(pin0, 8)

def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return int(red),int(green),int(blue)

while True:

 for value in range(0,360,5):

 for i in range(8):

 value=value+i*45

 if value > 360 :

 value = value-360

 red,green,blue=HSL_RGB(value)

 np[i] = (red,green,blue)

 np.show()

Set the number of data pins and LEDs.

 np = neopixel.NeoPixel(pin0, 8)

http://www.freenove.com/
mailto:support@freenove.com

99 Chapter 8 Neopixel

█ www.freenove.com

support@freenove.com █

Custom HSL_RGB() function is used to convert HSL color to RGB color, returning the RGB value corresponding

to the current hue angle.

 def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return int(red),int(green),int(blue)

In the 0-360 for loop, the hue difference between each two LEDs is 45. When the hue changes, each LED

succeeds the hue of the previous LED. And then the program converts the HSL color system to the RGB color

system, returns the RGB value corresponding to the current hue angle, and writes the value to LED to achieve

the effect of the rainbow water light.

 while True:

 for value in range(0,360,5):

 for i in range(8):

 value=value+i*45

 if value > 360 :

 value = value-360

 red,green,blue=HSL_RGB(value)

 np[i] = (red,green,blue)

 np.show()

Reference

neopixel.NeoPixel(pin, n)

Initialize a new strip of n number of neopixel LEDs controlled via pin pin.

show()

Show the pixels. Must be called for any updates to become visible.

np[i]

Set pixels by indexing them (like with a Python list).

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 100 Chapter 9 Buzzer

█ support@freenove.com

Chapter 9 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. There are two kinds of buzzer: active

buzzer and passive buzzer.

Component knowledge

Transistor

A transistor is required in this project due to the buzzer’s current being so great that GPIO of RPi’s output

capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to

amplify the current.

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a

transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals,

or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When

there is current passing between "be" then "ce" will have a several-fold current increase (transistor

magnification), in this configuration the transistor acts as an amplifier. When current produced by "be"

exceeds a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation

region and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

PNP transistor NPN transistor

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers

output current capacity is very weak, we will use a transistor to amplify its current in order to drive components

requiring higher current.

http://www.freenove.com/
mailto:support@freenove.com

101 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic

alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active

buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an

external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer

(A white label is attached on the active buzzer)

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers
require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various
frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive
buzzer is the loudest when its resonant frequency is 2kHz.

Buzzer requires large current when it works. But generally, microcontroller port cannot provide enough
current for that. In order to control buzzer through micro:bit, a transistor can be used to drive a buzzer
indirectly.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high

level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make

sounds. If GPIO outputs low level, no current will flow through R1, the transistor will not conduct current and

buzzer will remain silent (no sounds).

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 102 Chapter 9 Buzzer

█ support@freenove.com

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low

level, current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO

outputs high level, no current flows through R1, the transistor will not conduct current and buzzer will

remain silent (no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a

buzzer.

http://www.freenove.com/
mailto:support@freenove.com

103 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

How to identify active and passive buzzer?
1. As a rule, there is a label on an active buzzer covering the hole where sound is emitted, but there are
exceptions to this rule.
2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and
crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating (and
a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not have
protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see the circuit
board, coils, and a permanent magnet (all or any combination of these components depending on the model.

Active buzzer bottom Passive buzzer bottom

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 104 Chapter 9 Buzzer

█ support@freenove.com

Project 9.1 Active Buzzer

In this project, we will use an active buzzer to play a fixed melody.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

F/M x 3 M/M x1

NPN(8050) transistor x1

Resistor 1kΩ x1

Active buzzer x1

http://www.freenove.com/
mailto:support@freenove.com

105 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

Active buzzer

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 106 Chapter 9 Buzzer

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/09.1_ActiveBuzzer ActiveBuzzer.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, download the code into the micro:bit, and the buzzer on the breadboard

will make sounds.

In the for loop, P0 outputs a high level to make the buzzer sounds, then delay 100ms. And then P0 outputs a

low level to stop the buzzer. Then delay 100ms. After the loop ends, delay 500ms.

http://www.freenove.com/
mailto:support@freenove.com

107 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/09.1_ActiveBuzzer ActiveBuzzer.py

After load successfully, the code is shown as below:

Check the connection of the circuit, download the code into the micro:bit, and the buzzer on the breadboard

will sound.

The following is the program code:

1

2

3

4

5

6

7

8

from microbit import *

while True:

 for i in range(4):

 pin0.write_digital(1)

 sleep(100)

 pin0.write_digital(0)

 sleep(100)

 sleep(500)

In the for loop, P0 outputs a high level to make the buzzer sound, then delay 100ms. And then P0 outputs a

low level to stop the buzzer. Then delay 100ms. After the loop ends, delay 500ms.

1

2

3

4

5

6

7

while True:

 for i in range(4):

 pin0.write_digital(1)

 sleep(100)

 pin0.write_digital(0)

 sleep(100)

 sleep(500)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 108 Chapter 9 Buzzer

█ support@freenove.com

 Project 9.2 Happy Birthday Melody

In this project, we will make a passive buzzer to play a happy birthday melody.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

F/M x3 M/M x1

NPN(8050) transistor

x1

Resistor 1kΩ x1

Passive buzzer x1

http://www.freenove.com/
mailto:support@freenove.com

109 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

Passive buzzer

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 110 Chapter 9 Buzzer

█ support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

111 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/09.2_Play-a-melody Play-a-melody.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

the micro:bit, and the buzzer on the breadboard will play a song “happy birthday”.

You can click on the small triangle next to "birthday" to expand the list, select other melody, and select the

number of times to play by clicking on the small triangle next to "once".

Reference

Block Function

Begin playing a musical melody through pin P0 of the

micro:bit. There are built-in melodies that you can

choose from the start melody block. These are already

composed for you and are easy to use by just selecting

the one you want.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 112 Chapter 9 Buzzer

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/09.2_Play-a-melody Play-a-melody.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, and download the code

into the micro:bit, and the buzzer on the breadboard will play a song “happy birthday”. (How to download?)

The following is the program code:

1

2

3

from microbit import *

import music

music.play(music.BIRTHDAY)

Reference

music.play()

It is used to play music. MicroPython has quite a lot of built-in melodies.

For more information, please refer to:

https://microbit-micropython.readthedocs.io/en/latest/tutorials/music.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/tutorials/music.html

113 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Project 9.3 Custom Melody

In this project, we will make the passive buzzer play a custom melody.

Component list

Microbit x1

Extetnsion board x1

Breadboard x1

USB cable x2

F/M x3 M/M x1

NPN(8050)

transistor x1

Resistor 1kΩ x1

Passive buzzer x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 114 Chapter 9 Buzzer

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

Passive buzzer

http://www.freenove.com/
mailto:support@freenove.com

115 Chapter 9 Buzzer

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/09.3_Play-a-custom-melody Play-a-custom-melody.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

the micro:bit, and the buzzer on the breadboard will play a custom melody.

The tune array holds a custom melody, and each element in the array contains notes and beats. For example,

"A1:4" refers to the note named A in octave number 1 to be played for a duration of 4.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 116 Chapter 9 Buzzer

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/09.3_Play-a-custom-melody Play-a-custom-melody.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, confirm that the circuit is connected correctly, download the code into

the micro:bit, and the buzzer on the breadboard will play a custom song.

The tune array holds a custom melody, and each element in the array contains notes and beats. For example,

"A1:4" refers to the note named A in octave number 1 to be played for a duration of 4.

The following is the program code:

1

2

3

4

5

from microbit import *

import music

tune = ["C4:4", "D4:4", "E4:4", "C4:4", "C4:4", "D4:4", "E4:4", "C4:4",

 "E4:4", "F4:4", "G4:8", "E4:4", "F4:4", "G4:8"]

music.play(tune)

http://www.freenove.com/
mailto:support@freenove.com

117 Chapter 10 Serial Communication

█ www.freenove.com

support@freenove.com █

Chapter 10 Serial Communication

In this chapter, we will learn how to use serial port.

Project 10.1 Display the Data

This project uses serial ports to transmit data and display data.

Component list

Microbit x1

USB cable x1

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 118 Chapter 10 Serial Communication

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/10.1_SerialPort SerialPort.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct download the code into the micro:bit, and then open

the serial controller, as shown below:

On the serial console, you can see the data sent by the microbit.

http://www.freenove.com/
mailto:support@freenove.com

119 Chapter 10 Serial Communication

█ www.freenove.com

support@freenove.com █

Every 1 second, the value of the variable number is incremented by 1, and the new value will be sent to the

serial port.

Reference

Block Function

Write a name:value pair and a newline character (\r\n) to the serial

port.

The change blocks increase the value in the variable by the amount

you want. This is also known as an addition assignment operation.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 120 Chapter 10 Serial Communication

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/10.1_SerialPort SerialPort.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct and then download the code into the micro:bit.

After the program is downloaded, click on REPL as shown below.

Then press the reset button (the button on the back) of the Micro:bit and we will see the change of value.

http://www.freenove.com/
mailto:support@freenove.com

121 Chapter 10 Serial Communication

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

from microbit import *

import utime

number=0

while True:

 uart.write('Counter: '+str(number)+ "\r\n")

 sleep(1000)

 number=number+1

Every 1 second, the value of the variable number is incremented by 1, and the new value will be sent to the

serial port, where "\r\n" is the meaning of the newline.

 uart.write('Counter: '+str(number)+ "\r\n")

sleep(1000)

number=number+1

Reference

uart.write(x)

Write the buffer to the bus, it can be a bytes object or a string:

uart.write('hello world')

uart.write(b'hello world')

uart.write(bytes([1, 2, 3]))

For more information, please refer to:

https://microbit-micropython.readthedocs.io/en/latest/uart.html

http://www.freenove.com/
mailto:support@freenove.com
https://microbit-micropython.readthedocs.io/en/latest/uart.html

www.freenove.com █ 122 Chapter 11 Magnetometer

█ support@freenove.com

Chapter 11 Magnetometer

In this chapter, we will learn the micro:bit built-in magnetometer chip.

Project 11.1 Display Magnetometer Data

This project will print the data obtained from the magnetometer chip on the serial console.

Component list

Microbit x1

USB cable x1

Circuit

Connect micro:bit and PC via micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

123 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/11.1_DisplayMagnetometerData DisplayMagnetometerData.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, and then download the code into the micro:bit. After

completing downloading, the magnetometer needs to be calibrated (calibration must be performed using the

magnetometer program). Calibrating the magnetometer will cause the program to pause until the calibration

is completed. Start the calibration process, a prompt will scroll on the LED matrix, which indicates that you

need to rotate the micro:bit until all LEDs on the LED screen are illuminated, and then a smile is displayed

which means the calibration is completed, as shown below:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 124 Chapter 11 Magnetometer

█ support@freenove.com

Then open the serial console (Open the Serial Port), place the micro:bit horizontally on the desktop, and rotate

the micro:bit (clockwise or counterclockwise) to see the angular offset read from the magnetometer chip. As

shown below:

3 indicates the number of times of consecutive readings of the same value.

The angular offset is the angle between the directions of the micro:bit and the geographic North Pole, as

shown in the following figure.

http://www.freenove.com/
mailto:support@freenove.com

125 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

The angular offset read from the magnetometer chip is stored in the variable azimuth.

Then the value of the variable azimuth is printed on the serial port interface.

Reference

Block Function

Write a string to the serial port and start a new line of

text by writing \r\n.

Write a number to the serial port.

The micro:bit measures the compass heading from 0 to

359 degrees with its magnetometer chip. Different

numbers mean north, east, south, and west.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 126 Chapter 11 Magnetometer

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/11.1_DisplayMagnetometerData DisplayMagnetometerData.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit and verify it correct, download the code into micro:bit.

After downloading the program, click REPL, as shown below.

Then press the reset button of the Micro:bit, you need to calibrate the magnetometer (the calibration must

be performed when downloading using the magnetometer program).

Calibrating the magnetometer will cause the program to pause until the calibration is complete. Start the

calibration process, a prompt will scroll on the LED matrix, which indicates that you need to rotate the micro:bit

until all LEDs on the LED screen are illuminated, and then a smile is displayed which means the calibration is

completed, as shown below:

http://www.freenove.com/
mailto:support@freenove.com

127 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

Place the micro:bit horizontally on the desktop, and rotate the micro:bit (clockwise or counterclockwise) to

see the angular offset read from the magnetometer chip. As shown below:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 128 Chapter 11 Magnetometer

█ support@freenove.com

The angular offset is the angle between the direction of the micro:bit and the geographic north pole, as shown

in the following figure.

The following is the program code:

1

2

3

4

5

6

from microbit import *

compass.calibrate()

while True:

 azimuth = compass.heading()

 uart.write(str(azimuth)+"\r\n")

 sleep(1000)

Magnetometer calibration.

 compass.calibrate()

The angular offset read from the magnetometer chip is stored in the variable azimuth and then printed out

every 1s through a serial port.

 azimuth = compass.heading()

uart.write(str(azimuth)+"\r\n")

sleep(1000)

Reference

compass.calibrate()

Starts the calibration process. An instructive message will scroll on the LED matrix, which indicates that you

need to rotate the micro:bit until all LEDs are illuminated.

compass.heading()

Gives the compass heading, calculated from the above readings, as an integer in the range from 0 to 360,

representing the angle in degrees, clockwise, with north as 0.

http://www.freenove.com/
mailto:support@freenove.com

129 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

Project 11.2 Electronic Compass

In this project, we will use micro:bit to make an electronic compass, displaying an arrow on the micro:bit, and

the arrow always points to the geographic north pole.

Component list

Microbit x1

USB cable x1

Circuit

Connect micro:bit and PC via micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 130 Chapter 11 Magnetometer

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/11.2_ElectronicCompass ElectronicCompass.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, and then download the code into the micro:bit.

Calibrate the electronic compass. After the calibration is successful, place the micro:bit horizontally and turn

the micro:bit to see that the arrow points to the geography Arctic.

http://www.freenove.com/
mailto:support@freenove.com

131 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

The arrow will point to eight directions: northwest, west, southwest, south, southeast, east, northeast, north,

each direction is 45 degrees apart. Assuming that the direction of the micro:bit is rotated 45 degrees from the

north to the northeast of the geography, the arrow shown should be reversed, that is, it rotates

-45 degrees, pointing to the northwest of the micro:bit, which is the geographic north pole. Therefore, we

can adjust the direction of the arrow according to its angular offset from the geographic North Pole.

When the variable azimuth is less than 22.5 or greater than 337.5, the arrow points to the due north of the

micro:bit.

When the variable azimuth is greater than 22.5 or less than 67.5, the arrow points to the northwest of the

micro:bit.

And so on in the same fashion, in every 45 degrees, the arrow points to a particular direction indicating the

geographic north, as shown in the following illustration:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 132 Chapter 11 Magnetometer

█ support@freenove.com

The angular offset read from the magnetometer chip is stored in the variable azimuth

Determine the value of the variable azimuth to change the direction of the arrow.

Reference

Block Function

Run code depending on whether a Boolean condition is

true or false.

Shows the selected arrow on the LED screen

http://www.freenove.com/
mailto:support@freenove.com

133 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/11.2_ElectronicCompass ElectronicCompass.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct,, download the code into the micro:bit and calibrate

the electronic compass. After the calibration is successful, place the micro:bit horizontally and rotate the

micro:bit to see that the arrow points to the geography Arctic.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 134 Chapter 11 Magnetometer

█ support@freenove.com

The arrow will point to eight directions:: northwest, west, southwest, south, southeast, east, northeast, north,

each direction is 45 degrees apart. Assuming that the direction of the micro:bit is rotated 45 degrees from the

north to the northeast of the geography, the arrow shown should be reversed, that is, rotated -45 degrees,

pointing to the northwest of the micro:bit, which is the geographic north pole. Therefore, the direction of the

arrow is adjusted according to the angular offset from the geographic North Pole.

When the variable azimuth is less than 22.5 or greater than 337.5, the arrow points to the true north of the

micro:bit.

When the variable azimuth is greater than 22.5 and less than 67.5, the arrow points to the northwest of the

micro:bit.

And so on in the same fashion, in every 45 degrees, the arrow points to a particular direction indicating the

geographic north, as shown in the following figure:

http://www.freenove.com/
mailto:support@freenove.com

135 Chapter 11 Magnetometer

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

from microbit import *

compass.calibrate()

while True:

 azimuth = compass.heading()

 if azimuth<22.5 and azimuth<67.5:

 display.show(Image.ARROW_NW)

 elif azimuth<67.5 and azimuth<112.5:

 display.show(Image.ARROW_W)

 elif azimuth<112.5 and azimuth<157.5:

 display.show(Image.ARROW_SW)

 elif azimuth<157.5 and azimuth<202.5:

 display.show(Image.ARROW_S)

 elif azimuth<202.5 and azimuth<247.5:

 display.show(Image.ARROW_SE)

 elif azimuth<247.5 and azimuth<292.5:

 display.show(Image.ARROW_E)

 elif azimuth<292.5 and azimuth<337.5:

 display.show(Image.ARROW_NE)

 elif azimuth<22.5 and azimuth>337.5:

 display.show(Image.ARROW_N)

Calibrate the electronic compass first and store the data on the variable azimuth.

 compass.calibrate()

azimuth = compass.heading()

Determine the value of the variable azimuth and change the direction of the arrow.

 if azimuth<22.5 and azimuth<67.5:

display.show(Image.ARROW_NW)

elif azimuth<67.5 and azimuth<112.5:

display.show(Image.ARROW_W)

elif azimuth<112.5 and azimuth<157.5:

 display.show(Image.ARROW_SW)

elif azimuth<157.5 and azimuth<202.5:

 display.show(Image.ARROW_S)

elif azimuth<202.5 and azimuth<247.5:

 display.show(Image.ARROW_SE)

elif azimuth<247.5 and azimuth<292.5:

 display.show(Image.ARROW_E)

elif azimuth<292.5 and azimuth<337.5:

 display.show(Image.ARROW_NE)

elif azimuth<22.5 and azimuth>337.5:

 display.show(Image.ARROW_N)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 136 Chapter 12 Accelerometer

█ support@freenove.com

Chapter 12 Accelerometer

In this chapter, we will learn about the built-in accelerometer sensor of micro:bit.

Project 12.1 Display Accelerometer Data

In this project, we will obtain data from the accelerometer sensor and print it on the serial console.

Component list

Microbit x1

USB cable x1

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

137 Chapter 12 Accelerometer

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/12.1_DisplayAccelerometerData DisplayAccelerometerData.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, download the code into the micro:bit, and then open

the serial console, you can see the data of the accelerometer, as shown below:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 138 Chapter 12 Accelerometer

█ support@freenove.com

Read the value of the accelerometer in three directions and print it out through the serial port every second.

http://www.freenove.com/
mailto:support@freenove.com

139 Chapter 12 Accelerometer

█ www.freenove.com

support@freenove.com █

Reference

Block Function

Get the acceleration value in one of three dimensions, or

the combined value in all directions (x, y, and z).

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../PythonCode/12.1_DisplayAccelerometerData DisplayAccelerometerData.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, and then download the code into the micro:bit.

After the program is downloaded, open the plotter (Plotter), click on the REPL, you can see the x-axis, y-axis,

z-axis data collected by the accelerometer, as shown below:

The following is the program code:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 140 Chapter 12 Accelerometer

█ support@freenove.com

1

2

3

4

from microbit import *

while True:

 uart.write(str(accelerometer.get_values())+"\r\n")

 sleep(1000)

Every 1 second, the accelerometer data will be obtained and printed through the serial port.

1

2

uart.write(str(accelerometer.get_values())+"\r\n")

sleep(1000)

Reference

accelerometer.get_values()

Get the acceleration measurements in all axes at once, as a three-element tuple of integers ordered as X,

Y, Z. By default the accelerometer is configured with a range of +/- 2g, so X, Y, and Z will be within the

range of +/-2000mg.

http://www.freenove.com/
mailto:support@freenove.com

141 Chapter 12 Accelerometer

█ www.freenove.com

support@freenove.com █

Project 12.2 Gradiometer

In this project, we will use the accelerometer to make a level instrument.

Component list

Microbit x1

USB cable x1

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 142 Chapter 12 Accelerometer

█ support@freenove.com

Block code

Open MakeCode first.

Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/12.2_Gradienter Gradienter.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct and download the code into micro:bit, you will observe

that the LED dot matrix will change with the tilt of micro:bit.

Detect the flip angle of the microbit in the x-axis and the y-axis. The return value ranges from -180 to 180

degrees. This project does not require such a wide range of flip angles, so we just set it within -30 to 30

degrees.

Since the LED screen is 5x5, map the range of -30-30 to the range of 0-4, and assign it to the X, Y variable.

http://www.freenove.com/
mailto:support@freenove.com

143 Chapter 12 Accelerometer

█ www.freenove.com

support@freenove.com █

Turn OFF all the LED first, then turn ON the corresponding LED according to the value of the X, Y variables.

Reference

Block Function

Find how much the micro:bit is tilted in

different directions.

Turn ON the LED you set on the LED

screen.

If a number has a fractional part, you

can change the number to the nearest

integer value.

A map is a conversion of one span of

numbers to another.

Turn OFF all the LED lights on the LED

screen.

Make sure that the value of the number

you give is within the range.

http://www.freenove.com/
mailto:support@freenove.com
https://makecode.microbit.org/---docs#doc:device/screen
https://makecode.microbit.org/---docs#doc:device/screen

www.freenove.com █ 144 Chapter 12 Accelerometer

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/12.2_Gradienter Gradienter.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, download the code into micro:bit, you will observe

that the LED dot matrix will change with the tilt of micro:bit.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

from microbit import *

def mapping(value):

 if value < -400 :

 value=-400

 elif value > 400 :

 value=400

 value=(value+400)/200

 return int(value)

while True:

 value_x = accelerometer.get_x()

 value_y = accelerometer.get_y()

 x=mapping(value_x)

 y=mapping(value_y)

 display.clear()

 display.set_pixel(x, y, 9)

http://www.freenove.com/
mailto:support@freenove.com

145 Chapter 12 Accelerometer

█ www.freenove.com

support@freenove.com █

A custom mapping() function limits the input value to a range of -400 to 400 and maps to a range of 0-4.

 def mapping(value):

 if value < -400 :

 value=-400

 elif value > 400 :

 value=400

 value=(value+400)/200

 return int(value)

Read the value of the accelerometer X, Y-axis direction. The return value range is -2000-2000. This project

does not require such a wide range, So we set it to the range of -400to 400. Call the mapping() function to

return the value ranging from 0-4 , lighting the LED corresponding to the x row and the y column.

 while True:

 value_x = accelerometer.get_x()

 value_y = accelerometer.get_y()

 x=mapping(value_x)

 y=mapping(value_y)

 display.clear()

 display.set_pixel(x, y, 9)

Reference

display.clear()

Set the brightness of all LEDs to 0 (off).

display.set_pixel(x,y,9)

Set the brightness value of the LED at column x and row y, which has to be an integer between 0 and 9.

accelerometer.get_x()

Get the acceleration measurement in the x axis, as a positive or negative integer, depending on the

direction. The measurement is given in milli-g. By default the accelerometer is configured with a range of

+/- 2g, and so this method will return a value within the range of +/- 2000mg

accelerometer.get_y()

Get the acceleration measurement in the y axis, as a positive or negative integer, depending on the

direction. The measurement is given in milli-g. By default the accelerometer is configured with a range of

+/- 2g, and so this method will return a value within the range of +/- 2000mg.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 146 Chapter 13 Potentiometer

█ support@freenove.com

Chapter 13 Potentiometer

In this chapter, we will learn a new component: potentiometer

Project 13.1 Potentiometer

This project enables a rotatary potentiometer to output different voltages.

Component list

Microbit x1

Extension board x1

Breadboard x1

Potentiometer x1

USB cable x1

F/M x3

http://www.freenove.com/
mailto:support@freenove.com

147 Chapter 13 Potentiometer

█ www.freenove.com

support@freenove.com █

Component knowledge

ADC
An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or binary

form consisting of 1s and 0s. The range of our ADC module is 10 bits, that means the resolution is

2^10=1024, so that its range (at 3.3V) will be divided equally to 1024 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits

the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

Subsection 1: the analog in rang of 0V-3.3/1024V corresponds to digital 0;

Subsection 2: the analog in rang of 3.3 /1024V-2*3.3/1024V corresponds to digital 1;

…

The resultant analog signal will be divided accordingly.

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus

far in our project which have a fixed resistance value, the resistance value of a potentiometer can be

adjusted. A potentiometer is often made up by a resistive substance (a wire or carbon element) and

movable contact brush. When the brush moves along the resistor element, there will be a change in the

resistance of the potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The

illustration below represents a linear sliding potentiometer and its electronic symbol on the right.

1 32

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 148 Chapter 13 Potentiometer

█ support@freenove.com

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is
connected to the brush that makes contact with the resistive element. In our illustration, when the brush
moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches
the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will
decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values
between pin 1 and 3 and between pin 2 and 3 will be the same.
In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of
power. When you slide the brush “pin 3”, you can get variable voltage within the range of the power supply.

Rotary potentiometer

Rotary potentiometers and linear potentiometers have the same function; the only difference being the

physical action being a rotational rather than a sliding movement.

http://www.freenove.com/
mailto:support@freenove.com

149 Chapter 13 Potentiometer

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 150 Chapter 13 Potentiometer

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/13.1_Potentiometer Potentiometer.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct and then download the code into micro:bit.

Click on the console device, rotate the potentiometer, you will see the output ADC value and voltage value.

http://www.freenove.com/
mailto:support@freenove.com

151 Chapter 13 Potentiometer

█ www.freenove.com

support@freenove.com █

Read the analog voltage value of the P0 pin, the range is 0-1023, and then convert the analog voltage value

into a digital voltage value.

Print the analog voltage and digital voltage of P0 pin every 1 second.

Reference

Block Function

Read an analog signal (0 to 1023) from the

pin you set.)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 152 Chapter 13 Potentiometer

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/13.1_Potentiometer Potentiometer.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and confirm that the circuit is connected correctly. Download the code

into the micro:bit. (How to download?)

Click on the REPL, press the micro:bit reset button, and then rotate the potentiometer. You can see the change

in the value on the software Mu, as shown below.

http://www.freenove.com/
mailto:support@freenove.com

153 Chapter 13 Potentiometer

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

from microbit import *

while True:

 ADC = pin0.read_analog()

 voltage = ADC/1023*3.3

 print("convertvalue: "+str(ADC)+" voltage: "+str(voltage))

 sleep(1000)

Read the analog voltage value of the P0 pin, the range is 0-1023, and then convert the analog voltage value

into a digital voltage value.

 ADC = pin0.read_analog()

voltage = ADC/1023*3.3

Print the analog voltage and digital voltage of P0 pin every 1 second.

 print("convertvalue: "+str(ADC)+" voltage: "+str(voltage))

sleep(1000)

Reference

read_analog()

Read an analog signal (0 to 1023) from the pin you set.

print()

Print() is a Python built-in function for printing.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 154 Chapter 14 Potentiometer and LED

█ support@freenove.com

Chapter 14 Potentiometer and LED

This chapter is a comprehensive application of potentiometer and LED.

Project 14.1 Soft Light

In this project, we will make an LED with adjustable brightness.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

F/M x4 M/M x1

LED x1

Resistor 220Ω x1

Potentiometer x1

http://www.freenove.com/
mailto:support@freenove.com

155 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

Circuit

In this circuit, the port 1 and 2 of the potentiometer are respectively connected to the two ends of the power

supply, and the port3 is connected to the P0 pin of the micro:bit.

Schematic diagram

Hardware connection

P1 pin is connected to LED’s long pin (positive), and its short pin (negative) is connected to resistor.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 156 Chapter 14 Potentiometer and LED

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/14.1_SoftLight SoftLight.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct,, download the code into the micro:bit, and rotate the

potentiometer to see the change of the brightness.

Read the analog voltage value of the P0 pin, then the P1 pin outputs the same analog voltage value.

http://www.freenove.com/
mailto:support@freenove.com

157 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/14.1_SoftLight SoftLight.py

After load successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, download the code into the micro:bit, and rotate the

potentiometer to see the change of the brightness of the LED.

The following is the program code:

1

2

3

from microbit import *

while True:

 pin1.write_analog(pin0.read_analog())

Read the analog voltage value of the P0 pin, then the P1 pin outputs the same analog voltage value.

 pin1.write_analog(pin0.read_analog())

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 158 Chapter 14 Potentiometer and LED

█ support@freenove.com

Project 14.2 Multicolored Soft Light

In this project, we control the color of the RGBLED with a potentiometer.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

Rotary potentionmeter x1

RGB_LED x1

F/M x6 M/M x1

Resistor 220Ω x3

http://www.freenove.com/
mailto:support@freenove.com

159 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

RGBLED’s long pin (anode) is connected to 3.3V power supply.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 160 Chapter 14 Potentiometer and LED

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/14.2_ColorfulSoftLight ColorfulSoftLight.hex

After importing successfully, the code is shown as below:

Download the code into micro:bit, rotate the potentiometer, you can see that the color of the RGBLED is

changing.

Read the potentiometer's analog voltage and map the potentiometer's analog voltage ranging 0-1023 to the

hue angle ranging 0-360.

Convert the HSL color system to the RGB color system, return the RGB value corresponding to the current

hue angle, and store the value in the variable RGBColor.

http://www.freenove.com/
mailto:support@freenove.com

161 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

The value of the lower eight-bit blue channel of the variable RGBColor is assigned to the variable blue, the

value of the middle eight-bit green channel is assigned to the variable green, and the value of the upper

eight-bit red channel is assigned to the variable red.

RGBLED is a common anode, so the pins are set to low to turn on the RGBLED. The values of the variables

'red', 'green', and 'blue' are converted from 0-255 to analog signal values in the range of 1023-0, and then

reassigned to 'red', 'green', 'blue 'variable. In this kit, three LEDs of RGB LED share a common anode(+) and

their negative pins need to be set to LOW level to turn ON the RGB LED work. And the value of variables ‘red’,

‘green’, and ‘blue’ need to be converted from the value ranging from 0-255 to analog signal values ranging

from 1023-0, and then reassigned to them.

Write the analog voltage value of the red, green, and blue variables to the corresponding P0, P1, and P2 pins

to change the LED color.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 162 Chapter 14 Potentiometer and LED

█ support@freenove.com

Python code

Open the py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/14.2_ColorfulSoftLight ColorfulSoftLight.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit, verify it correct, download the code into micro:bit. By rotating

the potentiometer, you can see that the color of RGB LED is changing.

http://www.freenove.com/
mailto:support@freenove.com

163 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

from microbit import *

display.off()

def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return red,green,blue

while True:

 value=map(pin3.read_analog(),0,1023,0,360)

 red,green,blue=HSL_RGB(value)

 print(red,green,blue)

 red=map(red,0,255,1023,0)

 green=map(green,0,255,1023,0)

 blue=map(blue,0,255,1023,0)

 pin2.write_analog(red)

 pin1.write_analog(green)

 pin0.write_analog(blue)

 sleep(10)

Turn OFF the LED screen to use the P3 pin. A custom map() function converts values in one range of numbers

to values in another range of numbers.

 display.off()

def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 164 Chapter 14 Potentiometer and LED

█ support@freenove.com

The custom function HSL_RGB()is used to convert the HSL color system to the RGB color system and return

the RGB value corresponding to the current hue angle.

 def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return red,green,blue

Read the analog voltage value of the P3 pin and convert it to the corresponding hue angle. Call the HSL_RGB()

function to return the RGB value corresponding to the current hue angle, and then write the corresponding

RGB values to the P0, P1, and P2 pins to change the LED color.

 while True:

 value=map(pin3.read_analog(),0,1023,0,360)

 red,green,blue=HSL_RGB(value)

 print(red,green,blue)

 red=map(red,0,255,1023,0)

 green=map(green,0,255,1023,0)

 blue=map(blue,0,255,1023,0)

 pin2.write_analog(red)

 pin1.write_analog(green)

 pin0.write_analog(blue)

 sleep(10)

http://www.freenove.com/
mailto:support@freenove.com

165 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

Project 14.3 Rainbow Light

In this project, we use a potentiometer to control the RGB LED module.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

Freenove 8 RGB LED Module x1

F/M x3 F/F x3

Potentiometer x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 166 Chapter 14 Potentiometer and LED

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

167 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/14.3_RainbowLight RainbowLight.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, download the code into the micro:bit, rotate the

potentiometer, and the color ring of the RGB LED module also rotates.

Set the number of pins and LEDs for the RGB LED module, as well as the type of LED.

Read the voltage of the potentiometer and map the analog value of 0-1023 to an angle of 0-360.

In the for loop, the hue difference between each two LEDs is 45. When the hue changes, it ensures that the

LED succeeds the hue of the previous LED. Then it converts the HSL color system to the RGB color system,

and returns the RGB value corresponding to the angle, to make the LED to achieve the effect of the rainbow.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 168 Chapter 14 Potentiometer and LED

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/14.3_RainbowLight RainbowLight.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Rotate the

potentiometer, and then the color ring of the RGB LED module also rotates.

http://www.freenove.com/
mailto:support@freenove.com

169 Chapter 14 Potentiometer and LED

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

from microbit import *

import neopixel

np = neopixel.NeoPixel(pin0, 8)

def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return int(red),int(green),int(blue)

while True:

 for i in range(0, 8):

 value=pin1.read_analog()/1023*360+i*45

 if value > 360 :

 value = value-360

 red,green,blue=HSL_RGB(value)

 np[i] = (red,green,blue)

 np.show()

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 170 Chapter 14 Potentiometer and LED

█ support@freenove.com

Set the number of pins and LED to control the RGB LED module.

 np = neopixel.NeoPixel(pin0, 8)

Custom HSL_RGB() function is used to convert HSL color to RGB color, returning the RGB value corresponding

to the current hue angle.

 def HSL_RGB(degree):

 degree=degree/360*255

 if degree < 85:

 red = 255 - degree * 3

 green = degree * 3

 blue = 0

 elif degree < 170:

 degree = degree - 85

 red = 0

 green = 255 - degree * 3

 blue = degree * 3

 else:

 degree = degree - 170

 red = degree * 3

 green = 0

 blue = 255 - degree * 3

 return int(red),int(green),int(blue)

In the for loop, the analog voltage of the potentiometer is read and converted to the corresponding hue

angle. The hue difference between each two led is 45. The HSL_RGB() function is called to convert the HSL

color system to the RGB color system, return the RGB value corresponding to the current hue angle to make

the LED achieve the effect of rainbow.

 while True:

 for i in range(0, 8):

 value=pin1.read_analog()/1023*360+i*45

 if value > 360 :

 value = value-360

 red,green,blue=HSL_RGB(value)

 np[i] = (red,green,blue)

 np.show()

http://www.freenove.com/
mailto:support@freenove.com

171 Chapter 15 Light Sensor

█ www.freenove.com

support@freenove.com █

Chapter 15 Light Sensor

In this chapter, we will learn the micro:bit built-in light sensor and photoresistor.

Project 15.1 Built-in Light Sensor

In this project, we use the micro:bit built-in light sensor to measure the brightness of light.

Component list

Microbit x1

USB cable x1

Component knowledge

Light sensor

Micro:bit detects the ambient light intensity through the LED matrix. In forward bias mode, the LED screen

works as a display. In reverse bias mode, the LED screen works as a basic light sensor that can be used to

detect ambient light.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 172 Chapter 15 Light Sensor

█ support@freenove.com

Circuit

Connect micro:bit and PC via a micro USB cable.

Hardware connection

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/15.1_LightIntensityMeter LightIntensityMeter.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct and download the code into the micro:bit. Open the serial

port console, then you can see the reading light intensity. Cover the LED screen with your hand or increase

the light shining on it, you can see the change in value, the range of values is 0-255, 0 is dark, 255 is the

brightest, as shown below.

http://www.freenove.com/
mailto:support@freenove.com

173 Chapter 15 Light Sensor

█ www.freenove.com

support@freenove.com █

Reference

Block Function

Detect the light level (how bright or dark it is) of the

environment where you are. The light level 0 means

darkness and 255 means bright light.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 174 Chapter 15 Light Sensor

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/15.1_LightIntensityMeter LightIntensityMeter.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, download the code into the micro:bit. Open the serial

port console, then you can see the reading light intensity. Cover the LED screen with your hand or increase

the light shining on it, you can see the change in value, the range of values is 0-255, 0 is dark, 255 is the

brightest, as shown below.

http://www.freenove.com/
mailto:support@freenove.com

175 Chapter 15 Light Sensor

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

from microbit import *

while True:

 item = display.read_light_level()

 print (item)

Reference

display.read_light_level()

Use the display’s LEDs in reverse-bias mode to sense the amount of light falling on the display, return an

integer between 0 and 255 representing the light level. The larger the value, the brighter the light..

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 176 Chapter 15 Light Sensor

█ support@freenove.com

Project 15.2 Night Light

In this project, we will make a night light.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

F/M x 4 M/M x1

Photoresistance x1

LED x1

Resistor 10kΩ x1

Resistor 220Ω x1

http://www.freenove.com/
mailto:support@freenove.com

177 Chapter 15 Light Sensor

█ www.freenove.com

support@freenove.com █

Component knowledge

Photoresistor
A Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with

respect to receiving luminosity (light) on the component's light sensitive surface. A Photoresistor’s resistance

value will change in proportion to the ambient light detected. With this characteristic, we can use a

Photoresistor to detect light intensity. The Photoresistor and its electronic symbol are as follows.

The circuit below is often used to detect the change of a photoresistor’s resistance value:

In the above circuit, when a Photoresistor’s resistance vale changes due to a change in light intensity, the

voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can

be obtained by measuring this voltage.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 178 Chapter 15 Light Sensor

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

179 Chapter 15 Light Sensor

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/15.2_NightLight NightLight.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Cover the

photoresistor with your hand, the LED is turned ON. Move the hand away, the LED is turned OFF.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 180 Chapter 15 Light Sensor

█ support@freenove.com

Read the analog voltage value of the P0 pin.

If the analog voltage read is greater than or equal to 400, it is considered to be occluded, and the LED is

turned ON. Or the LED is turned OFF.

http://www.freenove.com/
mailto:support@freenove.com

181 Chapter 15 Light Sensor

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/15.2_NightLight NightLight.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Cover the

photoresistor with your hand, then the LED is turned ON. Move the hand away, then the LED is turned OFF.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 182 Chapter 15 Light Sensor

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

from microbit import *

while True:

 value = pin0.read_analog()

 if value>=400:

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

Read the analog voltage value of the P0 pin.

 value = pin0.read_analog()

If the analog voltage read is greater than or equal to 400, it is considered to be occluded, and the LED is

turned ON. Otherwise the LED is turned OFF.

 if value>=400:

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

http://www.freenove.com/
mailto:support@freenove.com

183 Chapter 16 Temperature Sensor

█ www.freenove.com

support@freenove.com █

Chapter 16 Temperature Sensor

In this chapter, we will learn the micro:bit built-in temperature sensor and thermistor.

Project 16.1 Built-in Temperature Sensor

In this project, we measure the temperature with the micro:bit’s built-in temperature sensor.

Component list

Microbit x1

USB cable x1

Circuit

Connect micro:bit and PC via micro the USB cable.

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 184 Chapter 16 Temperature Sensor

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/16.1_BuiltInThermometer BuiltInThermometer.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into micro:bit, and then LED

dot matrix screen will display the current detected temperature.

Reference

Block Function

Detect the temperature of the environment

where you are. The temperature is measured

in Celsius (metric).

http://www.freenove.com/
mailto:support@freenove.com

185 Chapter 16 Temperature Sensor

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/16.1_BuiltInThermometer BuiltInThermometer.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into micro:bit, and then LED

dot matrix screen will display the current detected temperature.

The following is the program code:

1

2

3

from microbit import *

while True:

 display.scroll(temperature())

Display the detected temperature on the LED dot matrix.

 display.scroll(temperature())

Reference

temperature()

Return the temperature of the micro:bit in Celcius.

display.scroll()

scrolls a string across the display

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 186 Chapter 16 Temperature Sensor

█ support@freenove.com

Project 16.2 Thermistor

In this project, we will use a thermistor to detect the ambient temperature.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

Jumper F/M x3

Thermistor x1

Resistor 10kΩ x1

http://www.freenove.com/
mailto:support@freenove.com

187 Chapter 16 Temperature Sensor

█ www.freenove.com

support@freenove.com █

Component knowledge

Thermistor
Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of

the Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect

temperature intensity. A Thermistor and its electronic symbol are shown below.

The relationship between resistance value and temperature of a thermistor is:

Rt=R*EXP[B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of e;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15+celsius temperature.

For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.

The circuit connection method of the Thermistor is similar to photoresistor, as the following:

We can use the value measured by the analog pin of micro:bit to obtain resistance value of thermistor, and
then we can use the formula to obtain the temperature value.
Therefore, the temperature formula can be derived as:

T2 = 1/(1/T1 + ln(Rt/R)/B)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 188 Chapter 16 Temperature Sensor

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

189 Chapter 16 Temperature Sensor

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/16.2_ExternalThermometer ExternalThermometer.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, download the code into the micro:bit, and the LED dot

matrix will display the detected temperature.

The temperature measured by the thermistor and the temperature measured by the micro:bit’s built-in

temperature sensor may have slight difference. This is because the hardware used is different, and there are

certain differences in the manufacturing of the components. It is within a reasonable range and can be ignored.

Obtain the temperature data measured by the thermistor, and then round up and display on the LED display.

Reference

Block Function

Belongs to the Freenove extension block. Get the

temperature data measured by the thermistor.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 190 Chapter 16 Temperature Sensor

█ support@freenove.com

Extensions

If you want to import Freenove extensions in a new project, follow the steps below to add them.

Click “Advanced” to

expand the list.

Click“Extension”.

Enter " https://github.com/Freenove/Makecode-Extension-Starter-Kit.git" to search.

http://www.freenove.com/
mailto:support@freenove.com

191 Chapter 16 Temperature Sensor

█ www.freenove.com

support@freenove.com █

Click to add.

It is added successfully.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 192 Chapter 16 Temperature Sensor

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/16.2_ExternalThermometer ExternalThermometer.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, download the code into the micro:bit, and the LED dot

matrix will display the detected temperature.

The following is the program code:

1

2

3

4

5

6

7

8

from microbit import *

import math

while True:

 adcValue = pin0.read_analog()

 V = adcValue*3.3/1023.0

 Rt = V/((3.3-V)/10)

 tempC = (1/(1/(273.15+25) + math.log(Rt/10)/3950))-273.15

 display.scroll(round(tempC))

Read the analog voltage of the thermistor and calculate the resistance of the thermistor.

 adcValue = pin0.read_analog()

 V = adcValue*3.3/1023.0

 Rt = V/((3.3-V)/10)

Calculate the current temperature according to the resistance value of the thermistor and then display it on

the LED dot matrix screen. For the formula, please refer to the component knowledge.,.

 tempC = (1/(1/(273.15+25) + math.log(Rt/10)/3950))-273.15

 display.scroll(round(tempC))

http://www.freenove.com/
mailto:support@freenove.com

193 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Chapter 17 Joystick

In an earlier chapter, we learned how to use Rotary Potentiometer. We will now learn about joysticks, which

are electronic modules that work on the same principle as the Rotary Potentiometer.

Project 17.1 Displaying Joystick Data

In this project, we will read the output data of a joystick and display it.

Component list

Microbit x1

Extetnsion board x1

USB cable x2

Joystick x1

F/F x4 F/M x3

Resistor 10kΩ x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 194 Chapter 17 Joystick

█ support@freenove.com

Component knowledge

Joystick
A Joystick is a kind of input sensor used with your fingers. You should be familiar with this concept already as

they are widely used in gamepads and remote controls. It can receive input on two axes (Y and or X) at the

same time (usually used to control direction on a two dimensional plane). And it also has a third direction

capability by pressing down (Z axis/direction).

This is accomplished by incorporating two rotary potentiometers inside the Joystick Module at 90 degrees

of each other, placed in such a manner as to detect shifts in direction in two directions simultaneously and

with a Push Button Switch in the “vertical” axis, which can detect when a User presses on the Joystick.

http://www.freenove.com/
mailto:support@freenove.com

195 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 196 Chapter 17 Joystick

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/17.1_DisplayJoystickData DisplayJoystickData.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Open the serial

console, then you can see the Joystick data, as shown below.

http://www.freenove.com/
mailto:support@freenove.com

197 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Read the analog voltage value of P1 and P2 pins and the digital voltage value of P0 pin, and print the values

every 500ms.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 198 Chapter 17 Joystick

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/17.1_DisplayJoystickData DisplayJoystickData.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into the micro:bit. Click on the

REPL, and then press the micro:bit reset button to see the Joystick data.

The following is the program code:

1

2

3

4

5

6

7

from microbit import *

while True:

 xVal = pin2.read_analog()

 yVal = pin1.read_analog()

 zVal = pin0.read_digital()

 print(xVal,yVal,zVal)

 sleep(500)

Read the analog voltage value of P0, P1, P2 pins.

 xVal = pin2.read_analog()

 yVal = pin1.read_analog()

 zVal = pin0.read_digital()

Print data every 500ms.

 print(xVal,yVal,zVal)

sleep(500)

http://www.freenove.com/
mailto:support@freenove.com

199 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Project 17.2 Showing Direction

This project shows the direction of the Joystick with arrows on the dot matrix.

Joystick direction Arrow direction Joystick Direction Arrow Direction

Press

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 200 Chapter 17 Joystick

█ support@freenove.com

Component list

It is same as the previous project.

Circuit

It is same as the previous project.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/17.2_Joystick Joystick.hex

After importing successfully, the code is shown as below:

http://www.freenove.com/
mailto:support@freenove.com

201 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Check the connection of the circuit and verify it correct. Download the code into the micro:bit, and then the

direction of the Joystick will be displayed on the dot matrix.

Get the values in the X, Y, and Z directions.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 202 Chapter 17 Joystick

█ support@freenove.com

Display the corresponding arrow image according to the values of the X, Y, and Z directions.

http://www.freenove.com/
mailto:support@freenove.com

203 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/17.2_Joystick Joystick.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct. Download the code into the micro:bit and then the

direction of the Joystick will be displayed on the dot matrix.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 204 Chapter 17 Joystick

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

from microbit import *

circle = Image("09900:"

 "90090:"

 "90090:"

 "90090:"

 "09900")

while True:

 xVal = pin2.read_analog()

 yVal = pin1.read_analog()

 zVal = pin0.read_digital()

 if zVal == 0:

 display.clear()

 display.show(circle)

 elif xVal <450 and yVal < 650 and yVal >450:

 display.clear()

 display.show(Image.ARROW_N)

 elif xVal >650 and yVal < 650 and yVal >450:

 display.clear()

 display.show(Image.ARROW_S)

 elif yVal >650 and xVal < 650 and xVal >450:

 display.clear()

 display.show(Image.ARROW_W)

 elif yVal < 450 and xVal < 650 and xVal >450:

 display.clear()

 display.show(Image.ARROW_E)

 elif xVal <450 and yVal > 650:

 display.clear()

 display.show(Image.ARROW_NW)

 elif xVal <450 and yVal < 450:

 display.clear()

 display.show(Image.ARROW_NE)

 elif xVal > 650 and yVal > 650:

 display.clear()

 display.show(Image.ARROW_SW)

 elif xVal > 650 and yVal < 450:

 display.clear()

 display.show(Image.ARROW_SE)

 else:

 display.clear()

http://www.freenove.com/
mailto:support@freenove.com

205 Chapter 17 Joystick

█ www.freenove.com

support@freenove.com █

Custom image number "0" will be displayed when pressing the Joystick.

 circle = Image("09900:"

 "90090:"

 "90090:"

 "90090:"

 "09900")

Get the values in the X, Y, and Z directions.

 xVal = pin2.read_analog()

 yVal = pin1.read_analog()

 zVal = pin0.read_analog()

Display the corresponding arrow image according to the value of X, Y, Z in three directions

 if zVal == 1:

 display.clear()

 display.show(circle)

 elif xVal <450 and yVal < 650 and yVal >450:

 display.clear()

 display.show(Image.ARROW_N)

 elif xVal >650 and yVal < 650 and yVal >450:

 display.clear()

 display.show(Image.ARROW_S)

 elif yVal >650 and xVal < 650 and xVal >450:

 display.clear()

 display.show(Image.ARROW_W)

 elif yVal < 450 and xVal < 650 and xVal >450:

 display.clear()

 display.show(Image.ARROW_E)

 elif xVal <450 and yVal > 650:

 display.clear()

 display.show(Image.ARROW_NW)

 elif xVal <450 and yVal < 450:

 display.clear()

 display.show(Image.ARROW_NE)

 elif xVal > 650 and yVal > 650:

 display.clear()

 display.show(Image.ARROW_SW)

 elif xVal > 650 and yVal < 450:

 display.clear()

 display.show(Image.ARROW_SE)

 else:

 display.clear()

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 206 Chapter 18 74HC595 and LED Bar Graph

█ support@freenove.com

Chapter 18 74HC595 and LED Bar Graph

In this chapter, we will learn a new component: 74HC595

Project 18.1 Flowing Water Light

In this project, we will use a 74HC595 chip and LED Bar Graph to make a flowing water light.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

F/M x5 M/M x11

LED Bar Graph x1

74HC595 x1

Resistor 220Ω x8

http://www.freenove.com/
mailto:support@freenove.com

207 Chapter 18 74HC595 and LED Bar Graph

█ www.freenove.com

support@freenove.com █

Component knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data

of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this

characteristic, the 74HC595 chip can be used to expand the IO ports of a Raspberry Pi. At least 3 ports on the

RPI board are required to control the 8 ports of the 74HC595 chip.

The ports of 74HC595 are described as follows:

Pin name Pin number Description

Q0-Q7 15, 1-7 Parallel data output

VCC 16 The positive electrode of power supply, the voltage is 2~6V

GND 8 The negative electrode of power supply

DS 14 Serial data Input

OE 13 Enable output,

When this pin is in high level, Q0-Q7 is in high resistance state

When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel update output: when its electrical level is rising, it will update the

parallel data output.

SH_CP 11 Serial shift clock: when its electrical level is rising, serial data input register

will do a shift.

MR 10 Remove shift register: When this pin is in low level, the content in shift

register will be cleared .

Q7' 9 Serial data output: it can be connected to more 74HC595 in series.

For more detail, please refer to the datasheet.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 208 Chapter 18 74HC595 and LED Bar Graph

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

If LED bar doesn’t work, try rotating the LED bar 180°.

http://www.freenove.com/
mailto:support@freenove.com

209 Chapter 18 74HC595 and LED Bar Graph

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/18.1_FlowingLight02 FlowingLight02.hex

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verify it correct, download the code into micro:bit, and you

can see that the LED flow from left to right in turn circularly.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 210 Chapter 18 74HC595 and LED Bar Graph

█ support@freenove.com

Set 74HC595’s data pin as P0, launch pin as P1, and clock pin as P2.

In the for loop, the number '1' moves index bit to the left, writes the shifted value to 74HC595 serially, and

then turn ON the LED through parallel output of Q0-Q7 to realize flowing water light.

Reference

Block Function

It belongs to Freenove

Extension Block. It is used

to set data pin, launch pin,

clock pin for 74HC595.

It belongs to Freenove

Extension Block. The data

of 0-255 is serially written

to 74HC595, and then

output in parallel through

Q0-Q7. The order of data

writing is either from the

highest bit or from the

least bit.

It belongs to Freenove

Extension Block. Move data

to the left (x) bit or to the

right (x) bit.

http://www.freenove.com/
mailto:support@freenove.com

211 Chapter 18 74HC595 and LED Bar Graph

█ www.freenove.com

support@freenove.com █

python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/18.1_FlowingLight02 FlowingLight02.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit and verify it correct, download the code into micro:bit, and you

can see that the LED flow from left to right in turn circularly.

The following is the program code:

1

2

3

4

from microbit import *

LSBFIRST=1

MSBFIRST=2

#define the pins connect to 74HC595

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 212 Chapter 18 74HC595 and LED Bar Graph

█ support@freenove.com

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

dataPin=pin0 #DS Pin of 74HC595(Pin14)

latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)

clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)

def shiftOut(value,dPin,cPin,order):

 for i in range (8):

 cPin.write_digital(0)

 if order==MSBFIRST:

 flag=value<<i & 0x80

 if flag==0x80:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 else:

 flag=value>>i & 0x01

 if flag==0x01:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 cPin.write_digital(1)

while True:

 for i in range(8):

 value=0x01<<i

 latchPin.write_digital(0)

 shiftOut(value,dataPin,clockPin,LSBFIRST)

 latchPin.write_digital(1)

 sleep(500)

Define pins P0, P1, P2 for 74HC595.

 from microbit import *

LSBFIRST=1

MSBFIRST=2

#define the pins connect to 74HC595

dataPin=pin0 #DS Pin of 74HC595(Pin14)

latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)

clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)

Custom shiftOut() function is used to write data to 74HC595 serially.

 def shiftOut(value,dPin,cPin,order):

 for i in range (8):

 cPin.write_digital(0)

 if order==MSBFIRST:

 flag=value<<i & 0x80

 if flag==0x80:

 dPin.write_digital(1)

http://www.freenove.com/
mailto:support@freenove.com

213 Chapter 18 74HC595 and LED Bar Graph

█ www.freenove.com

support@freenove.com █

 else:

 dPin.write_digital(0)

 else:

 flag=value>>i & 0x01

 if flag==0x01:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 cPin.write_digital(1)

In the for loop, the value of the variable value shifts to the left i-bit, then the value of the variable value is

written to 74HC595, and then turn ON the LED one by one through parallel output of Q0-Q7 to realize

flowing water light.

 while True:

 for i in range(8):

 value=0x01<<i

 latchPin.write_digital(0)

 shiftOut(value,dataPin,clockPin,LSBFIRST)

 latchPin.write_digital(1)

 sleep(500)

Reference

shiftOut(value,dPin,cPin,order)

This function is used to serially write 8 bits of data to 74HC595. Value represents data to be written to

74HC595 registers, dPin represents data pins, cPin represents clock pins, and order represents priority bit

flags (high or low). About order, LSBFIRST starts writing from low data, MSBFIRST starts writing from high

data.

<< operator

"<<" is a left shift operator that moves all bits of byte data to the left (high) direction by a few bits and add

0 on the right (low). For example, shift binary 0001 1110 to the left by 1 bit to get 0011 1100. If you shift 1

bit to the right, it is 0000 1111.

">>" is the right shift operator, as opposed to the left shift operator, which moves all bits of byte data to

the right (low) direction by a few bits and add 0 on the left(high).

& operator

& is a bitwise AND operation, which performs an AND operation on binary bit. Operation rules:

0&0=0;

0&1=0;

1&0=0;

1&1=1

For example:

A=0011 1100

B=0000 1101

A&B=0000 1100

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 214 Chapter 19 74HC595 and 7-segment display

█ support@freenove.com

Chapter 19 74HC595 and 7-segment display

In this chapter, we will learn a new component: 7-segment display.

Project 19.1 7-segment display

In this project, we will use the 74HC595 chip and a 7-segment digital tube display to display the numbers 0

to 9.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x1

1-digit 7-segment-display x1

74HC595 x1

M/M x12 F/M x5

Resistor 220Ω x8

http://www.freenove.com/
mailto:support@freenove.com

215 Chapter 19 74HC595 and 7-segment display

█ www.freenove.com

support@freenove.com █

Component knowledge

1-digit 7-segment display
A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point

represented, which consists of 8 LEDs. There are two kinds of 1-digit 7-segment display: Common Anode

and Common Cathode. The one we use is that have a Common Anode(+) and individual Cathodes. Its

internal structure and pin designation diagram is shown below:

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by

combining LEDs with different states of ON and OFF, we can display different characters (Numbers and

Letters). For example, to display a “0”: we need to turn ON LED segments 7,6,4,2,1 and 9, and turn OFF LED

segments 10 and 5.

If we use a byte to show the state of the LEDs that connected to pin 5, 10, 9, 1, 2, 4, 6, 7, we can use 0 to
represent the state of on and 1 for off. Then the number 0 can be expressed as a binary number 11000000,
namely hex 0xc0.

The numbers and letters that can be display are shown below:

Number/Letter Binary number Hexadecimal number Decimal number

0 11000000 0xc0 192

1 11111001 0xf9 249

2 10100100 0xa4 164

3 10110000 0xb0 176

4 10011001 0x99 153

5 10010010 0x92 146

6 10000010 0x82 130

7 11111000 0xf8 248

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 216 Chapter 19 74HC595 and 7-segment display

█ support@freenove.com

8 10000000 0x80 128

9 10010000 0x90 144

A 10001000 0x88 136

b 10000011 0x83 131

C 11000110 0xc6 198

d 10100001 0xa1 161

E 10000110 0x86 134

F 10001110 0x8e 142

http://www.freenove.com/
mailto:support@freenove.com

217 Chapter 19 74HC595 and 7-segment display

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 218 Chapter 19 74HC595 and 7-segment display

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/19.1_SevenSegmentDisplay SevenSegmentDisplay.hex

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, the code is downloaded into micro:bit.

You can see that the 7-segment display shows 0, 1... 9 in turn.

http://www.freenove.com/
mailto:support@freenove.com

219 Chapter 19 74HC595 and 7-segment display

█ www.freenove.com

support@freenove.com █

Set 74HC595 data pin as P0, launch pin as P1, and clock pin as P2.

In the for loop, the digital tube displays the numbers 0 to 9 in turn, and change the number every 500ms.

Reference

Block Function

It belongs to Freenove Extension Block. It is used to control digital tube to

display number and character 0-F by using 74HC595.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 220 Chapter 19 74HC595 and 7-segment display

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/19.1_SevenSegmentDisplay SevenSegmentDisplay.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, the code is downloaded into micro:bit.

You can see that the 7-segment display shows 0, 1... 9 in turn.

http://www.freenove.com/
mailto:support@freenove.com

221 Chapter 19 74HC595 and 7-segment display

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

from microbit import *

number =[0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90]

LSBFIRST=1

MSBFIRST=2

#define the pins connect to 74HC595

dataPin=pin0 #DS Pin of 74HC595(Pin14)

latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)

clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)

def shiftOut(value,dPin,cPin,order):

 for i in range (8):

 cPin.write_digital(0)

 if order==MSBFIRST:

 flag=value<<i & 0x80

 if flag==0x80:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 else:

 flag=value>>i & 0x01

 if flag==0x01:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 cPin.write_digital(1)

while True:

 for Num in number:

 latchPin.write_digital(0)

 shiftOut(Num,dataPin,clockPin,MSBFIRST)

 latchPin.write_digital(1)

 sleep(500)

Define variable number to store numbers 0, 1, 2...9 in Hexadecimal.

Define pins P0, P1, P2 for 74HC595.

 number =[0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90]

LSBFIRST=1

MSBFIRST=2

#define the pins connect to 74HC595

dataPin=pin0 #DS Pin of 74HC595(Pin14)

latchPin=pin1 #ST_CP Pin of 74HC595(Pin12)

clockPin=pin2 #SH_CP Pin of 74HC595(Pin11)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 222 Chapter 19 74HC595 and 7-segment display

█ support@freenove.com

Custom shiftOut () function is used for writing data to 74HC595 serially.

 def shiftOut(value,dPin,cPin,order):

 for i in range (8):

 cPin.write_digital(0)

 if order==MSBFIRST:

 flag=value<<i & 0x80

 if flag==0x80:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 else:

 flag=value>>i & 0x01

 if flag==0x01:

 dPin.write_digital(1)

 else:

 dPin.write_digital(0)

 cPin.write_digital(1)

Call the shiftOut() function, and write the hexadecimal number stored in the number variable to 74HC595

serially, then turn ON the LEDs through parallel output of Q0 ~ Q7.

 while True:

 for Num in number:

 latchPin.write_digital(0)

 shiftOut(Num,dataPin,clockPin,MSBFIRST)

 latchPin.write_digital(1)

 sleep(500)

http://www.freenove.com/
mailto:support@freenove.com

223 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

Chapter 20 LCD1602

In this chapter, we will learn the LCD1602 display.

Project 20.1 I2C LCD1602

This project realizes the display of the current ambient temperature on the LCD1602 display.

Component list

Microbit x1

Extension board x1

USB cable x2

F/F x4

LCD1602

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 224 Chapter 20 LCD1602

█ support@freenove.com

Component knowledge

LCD1602

The LCD1602 Display Screen can display 2 lines of characters in 16 columns. It is capable of displaying numbers,

letters, symbols, ASCII code and so on. As shown below is a monochrome LCD1602 Display Screen along with

its circuit pin diagram

I2C LCD1602 Display Screen integrates a I2C interface, which connects the serial-input & parallel-output

module to the LCD1602 Display Screen. This allows us to only use 4 lines to the operate the LCD1602.

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I2C address is

0x27(0x3F).

http://www.freenove.com/
mailto:support@freenove.com

225 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

PCF8574 pin diagram:

PCF8574 chip pin diagram:

PCF8574 module pin diagram

PCF8574 module pin and LCD1602 pin are corresponding to each other and connected with each other:

Because of this, as stated earlier, we only need 4 pins to control the 16 pins of the LCD1602 Display Screen

through the I2C interface.

In this project, we will use I2CLCD1602 to display some static characters and dynamic variables.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 226 Chapter 20 LCD1602

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

227 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/20.1_LCD1602 LCD1602.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into the micro:bit, and then the

LCD screen will display the current ambient temperature.

So far, at this writing, we have two types of LCD1602 on sale. One needs to adjust the backlight, and the

other does not.

The LCD1602 that does not need to adjust the backlight is shown in the figure below.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

www.freenove.com █ 228 Chapter 20 LCD1602

█ support@freenove.com

If the LCD1602 you received is the following one, and you cannot see anything on the display or the display

is not clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the

screen can display clearly.

LCD initialization, we provide two kinds of LCD screen, you can write I2C address (0x27 or 0x3F) according

to the LCD screen you receive. If you enter 0, it will automatically search for the correct I2C address and

connect.

Display the temperature of the current environment on the LCD display.

Reference

Block Function

LCD initialization, input LCD I2C address (0x27 or 0x3F). If you

enter 0, it will automatically find the correct address and

connect.

The LCD screen displays the number in the x column, y column

of the screen.

The LCD screen displays the string in the x column, the y

column of the screen

http://www.freenove.com/
mailto:support@freenove.com

229 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

Extensions

If you want to import the LCD1602 expansion block in a new project, follow the steps below to add it.

2 Click on "Extension"

1 Click on "Advanced" to

expand the list

Enter "i2Clcd1602" to

search.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 230 Chapter 20 LCD1602

█ support@freenove.com

Click add.

It is completed.

http://www.freenove.com/
mailto:support@freenove.com

231 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

Python code

Import necessary Python file into micro:bit

In the code of this tutorial, the LCD1602 module and DHT11 module are used, so it is necessary to import

"I2C_LCD1602_Class.py" and "DHT11_RW.py" into the micro:bit. You can skip this section if you don’t use them.

When you need, you can come back to import them.

The import method is as follows:

Search on the C drive and find the "mu_code" folder.

Double click on "mu_code" to enter the folder.

Copy “I2C_LCD1602_Class.py” and “DHT11_RW.py” from following path into “mu_code” directory.

File type Path File name

Python file .. /Projects/PythonLibrary I2C_LCD1602_Class.py DHT11_RW.py

After pasting successfully, you can see them as below:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 232 Chapter 20 LCD1602

█ support@freenove.com

Open the Mu software, click "Files". Here we take "I2C_LCD1602_Class.py" as an example, drag

"I2C_LCD1602_Class.py" into micro:bit.

After importing successfully, you will see it on the left.

The import method of "DHT11_RW.py" is the same as described above. You just need to import the one you

need to use.

Note, after you upload other file into micro:bit, the original content will be covered. You need to import

it next time you use it.

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/20.1_LCD1602 LCD1602.py

After the code is loaded, as shown below, import the "I2C_LCD1602_Class.py" file to micro:bit before

Select it and keep pressing with left mouse button, drag it to left box.

http://www.freenove.com/
mailto:support@freenove.com

233 Chapter 20 LCD1602

█ www.freenove.com

support@freenove.com █

downloading the code.

(How to import?)

After the "I2C_LCD1602_Class.py" file is imported, check the connection of the circuit and verify it correct.

Download the code into the micro:bit and the LCD screen will display the current ambient temperature.

NOTE: After the program is executed, if you cannot see anything on the display or the display is not

clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen

can display the Temperature clearly.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_python文件导入micro:bit方法

www.freenove.com █ 234 Chapter 20 LCD1602

█ support@freenove.com

The following is the program code:

1

2

3

4

5

from microbit import *

from I2C_LCD1602_Class import *

lcd = I2C_LCD1602(0x27)

while True:

 lcd.puts("temperature:"+str(temperature()), 0, 0)

Export everything from the I2C_LCD1602_Class module, create the object lcd of the I2C_LCD1602 class, and

enter the I2C address of the LCD screen. Change the I2C address according to the LCD type.

If the chip of LCD is PCF8574 T, the i2c address is 0x27.

If the chip of LCD is PCF8574A T, the i2c address is 0x3F.

 from I2C_LCD1602_Class import *

lcd = I2C_LCD1602(0x27)

Read the temperature data, and then call the puts function in the I2C_LCD1602 class to display the

temperature on the LCD screen.

 lcd.puts("temperature:"+str(temperature()), 0, 0)

Reference

puts(String,x,y)

This function is defined in the I2C_LCD1602 class. The function is to display the string on the LCD screen x

column, y row, x range is 0-15, y range is 0-1.

http://www.freenove.com/
mailto:support@freenove.com

235 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Chapter 21 Motor

In this chapter, we will learn the comprehensive application of motor.

Project 21.1 Relay & Motor

In this project, we will control a relay to drive a motor.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

NPN(8050)transistor x 1

Motor x1

1kΩ x1

220Ω x1

Jumper M/M x4

Jumper F/M x5

Jumper F/F x1

Relay x1

LED x1

Diode x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 236 Chapter 21 Motor

█ support@freenove.com

Component knowledge

DC Motor
DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major

parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the

Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and

it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only

use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more

electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply

electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with

two terminal pins.

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of

the power supply, the DC Motor will rotate in opposite direction. This is important to note.

http://www.freenove.com/
mailto:support@freenove.com

237 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Relay
Relays are a type of Switch that open and close circuits electromechanically or electronically. Relays control

one electrical circuit by opening and closing contacts in another circuit using an electromagnet to initiate

the Switch action. When the electromagnet is energized (powered), it will attract internal contacts

completing a circuit, which act as a Switch. Many times Relays are used to allow a low powered circuit (and a

small low amperage switch) to safely turn ON a larger more powerful circuit. They are commonly found in

automobiles, especially from the ignition to the starter motor.

The following is a basic diagram of a common relay and the image and circuit symbol diagram of the 5V

relay used in this project:

Diagram

Feature:

Symbol

Pin 5 and pin 6 are internally connected to each other. When the coil pin3 and pin 4 are connected to a 5V

power supply, pin 1 will be disconnected from pins 5 & 6 and pin 2 will be connected to pins 5 & 6. Pin 1 is

called Closed End and pin 2 is called the Open End.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 238 Chapter 21 Motor

█ support@freenove.com

Inductor

The symbol of Inductance is “L” and the unit of inductance is the “Henry” (H). Here is an example of how this

can be encountered: 1H=1000mH, 1mH=1000μH.

An Inductor is a passive device that stores energy in its Magnetic Field and returns energy to

the circuit whenever required. An Inductor is formed by a Cylindrical Core with many Turns of conducting wire

(usually copper wire). Inductors will hinder the changing current passing through it. When the current passing

through the Inductor increases, it will attempt to hinder the increasing movement of current; and when the

current passing through the inductor decreases, it will attempt to hinder the decreasing movement of current.

So the current passing through an Inductor is not transient.

The circuit for a Relay is as follows: The coil of Relay can be equivalent to an Inductor, when a Transistor is

present in this coil circuit it can disconnect the power to the relay, the current in the Relay’s coil does not stop

immediately, which affects the power supply adversely. To remedy this, diodes in parallel are placed on both

ends of the Relay coil pins in opposite polar direction. Having the current pass through the diodes will avoid

any adverse effect on the power supply.

http://www.freenove.com/
mailto:support@freenove.com

239 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 240 Chapter 21 Motor

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/21.1_Relay Relay.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into micro:bit. Press button A,

then the motor starts to rotate. Release the button, then the motor stops.

It is to determine whether the button A is pressed. If pressed, P0 outputs a high level, the relay is turned on,

and the motor is running; if it is not pressed, P0 outputs a low level, and the motor does not run.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

241 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/21.1_Relay Relay.py

After loading successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into micro:bit. Press button A,

then the motor starts to rotate. Release the button, then the motor stops.

The following is the program code:

1

2

3

4

5

6

from microbit import *

while True:

 if button_a.is_pressed():

 pin0.write_digital(1)

 else:

 pin0.write_digital(0)

If A is pressed, P0 outputs a high level, the relay is turned on, and the motor is running. If it is not pressed,

P0 outputs a low level, and the motor does not run.

 if button_a.is_pressed():

 pin0.write_digital(1)

 else:

 pin0.write_digital(0)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 242 Chapter 21 Motor

█ support@freenove.com

Project 21.2 Potentiometer & Motor

In this project, a rotary potentiometer is used to control a motor.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

F/M x9 M/M x3

Rotary potentionmeter x1

Motor x1

L293D x1

http://www.freenove.com/
mailto:support@freenove.com

243 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Component knowledge

L293D
L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC

Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered

later in this Tutorial).

Port description of L293D module is as follows:

For more details, please see datasheet.
When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through

the PWM, However the motor then can only rotate in one direction.

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the

other channel connects to GND. Therefore, you can control the speed of the motor. When these two

channel signals are exchanged, not only controls the speed of motor, but also can control the speed of the

motor.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 244 Chapter 21 Motor

█ support@freenove.com

In practical use the motor is usually connected to channel 1 and by outputting different levels to in1 and in2

to control the rotational direction of the motor, and output to the PWM wave to Enable1 port to control the

motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to in3

and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control the

motor’s rotational speed.

http://www.freenove.com/
mailto:support@freenove.com

245 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 246 Chapter 21 Motor

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/21.2_Motor Motor.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct. Download the code into the micro:bit and rotate the

potentiometer. When the potentiometer is in the middle position, the motor stops rotating. When the

potentiometer gets away from middle position, the motor speed increases. The potentiometer moves to the

limit and the motor speed reaches its maximum value. When the potentiometer is on a different side, the

rotating direction of motor is different.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

247 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Read the analog value of the P0 pin of the potentiometer. When the analog value is less than 411, the motor

rotates forward. When the analog value is greater than 612, the motor reverses. When the analog value is

between 411 and 612, the motor does not rotate.

Set P2 to low level. P1 outputs PWM signal with an interval of 20ms and duty cycle changes with the change

of potentiometer variable, then motor rotates forward.

Set P1 to low level, P2 output PWM signal with an interval of 20ms, duty cycle changes with the change of

potentiometer variable, then motor rotates in a reverse direction.

When P1, P2 pin output high level, motor does not rotate.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 248 Chapter 21 Motor

█ support@freenove.com

Reference

Block Function

Write an analog signal (0 through 1023) to the pin you

set.

Configure the period of Pulse Width Modulation (PWM)

on the specified analog pin. Before you call this

function, you should set the specified pin as analog.

http://www.freenove.com/
mailto:support@freenove.com

249 Chapter 21 Motor

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/21.2_Motor Motor.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct. Download the code into the micro:bit and rotate the

potentiometer. When the potentiometer is in the middle position, the motor stops rotating. When the

potentiometer gets away from middle position, the motor speed increases. The potentiometer moves to the

limit and the motor speed reaches its maximum value. When the potentiometer is on a different side, the

rotating direction of motor is different.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

from microbit import *

while True:

 potentiometer=pin0.read_analog()

 if potentiometer<=411:

 pin2.write_digital(0)

 pin1.write_analog((411-potentiometer)/411*1023)

 pin1.set_analog_period(20)

 elif potentiometer>=612:

 pin1.write_digital(0)

 pin2.write_analog((potentiometer-612)/411*1023)

 pin2.set_analog_period(20)

 else:

 pin1.write_digital(1)

 pin2.write_digital(1)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 250 Chapter 21 Motor

█ support@freenove.com

Read the analog value of the P0 pin of the potentiometer. When the analog value is less than 411, the motor

rotates forward. When the analog value is greater than 612, the motor reverses. When the analog value is

between 411 and 612, the motor does not rotate.

 potentiometer=pin0.read_analog()

 if potentiometer<=411:

 elif potentiometer>=612:

 else:

Set P2 to low level. P1 outputs PWM signal with an interval of 20ms, duty cycle changes with potentiometer

variable, then motor rotates forward.

 pin2.write_digital(0)

 pin1.write_analog((411-potentiometer)/411*1023)

 pin1.set_analog_period(20)

Set P1 to low level. P2 outputs PWM signal with an interval of 20ms, duty cycle changes with the change of

potentiometer variable, then motor rotates in a reverse direction.

 pin1.write_digital(0)

 pin2.write_analog((potentiometer-612)/411*1023)

 pin2.set_analog_period(20)

When P1, P2 pins output high level, motor does not rotate.

 pin1.write_digital(1)

 pin2.write_digital(1)

Reference

pin.set_analog_period(int)

sets the interval; of the PWM output of the pin in milliseconds

see https://en.wikipedia.org/wiki/Pulse-width_modulation

pin.write_analog(value)

value is between 0 and 1023

http://www.freenove.com/
mailto:support@freenove.com

251 Chapter 22 Servo

█ www.freenove.com

support@freenove.com █

Chapter 22 Servo

In this chapter, we will learn about Servos which are a rotary actuator type motor that can be controlled rotate

to specific angles.

Project 22.1 Sweep

In this project, we will use a servo.

Component list

Microbit x1

Extension board x1

USB cable x2

Servo x1

Jumper F/M x3

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 252 Chapter 22 Servo

█ support@freenove.com

Component knowledge

Servo
Servo is a compact package which consists of a DC Motor, a set of reduction gears to provide torque, a sensor

and control circuit board. Most Servos only have a 180-degree range of motion via their “horn”. Servos can

output higher torque than a simple DC Motor alone and they are widely used to control motion in model cars,

model airplanes, robots, etc. Servos have three wire leads which usually terminate to a male or female 3-pin

plug. Two leads are for electric power: Positive (2-VCC, Red wire), Negative (3-GND, Brown wire), and the

signal line (1-Signal, Orange wire) as represented in the Servo provided in your Kit.

We will use a 50Hz PWM signal with a duty cycle in a certain range to drive the Servo. The lasting time 0.5ms-

2.5ms of PWM single cycle high level corresponds to the Servo angle 0 degrees - 180 degree linearly. Part of

the corresponding values are as follows:

High level time Servo angle

0.5ms 0 degree

1ms 45 degree

1.5ms 90 degree

2ms 135 degree

2.5ms 180 degree

As can be seen from the above table, the servo rotates from 0 to 180 degrees, and the corresponding pulse

width is 0.5-2.5ms. Then the analog voltage value is written to the micro:bit pin ranging from 25.6 to 128.

http://www.freenove.com/
mailto:support@freenove.com

253 Chapter 22 Servo

█ www.freenove.com

support@freenove.com █

Circuit

This circuit Servo is powered by 5V, and the Micro:bit P0 pin controls the Servo rotation angle.

Diagram schematic

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 254 Chapter 22 Servo

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/22.1_Sweep Sweep.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit, verify it correct, and download the code into micro:bit. The servo rotates

from 0 degrees to 180 degrees, then from 180 degrees to 0 degrees, and repeats in an endless loop.

In the for loop of 0-180, let the servo change from 0 to 180 degrees.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

255 Chapter 22 Servo

█ www.freenove.com

support@freenove.com █

In the for loop of 0-180, take the difference between 180 and index2, and let the servo rotate from 180

degrees to 0 degrees.

Reference

Block Function

Write a value to the servo on the specified pin and control the

shaft.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 256 Chapter 22 Servo

█ support@freenove.com

python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/22.1_Sweep Sweep.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, and

then the servo will from 0 degree to 180 degree, and then from 180 degree to 0 degree, which repeats in an

endless loop.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

from microbit import *

def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

while True:

 pin0.set_analog_period(20)

 for i in range(180):

 pin0.write_analog(map(i,0,180,25.6,128))

 sleep(5)

 for i in range(180,0,-1):

 pin0.write_analog(map(i,0,180,25.6,128))

 sleep(5)

http://www.freenove.com/
mailto:support@freenove.com

257 Chapter 22 Servo

█ www.freenove.com

support@freenove.com █

Define map functions to convert values in one range to values in another range.

 def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

Set the interval of the PWM signal to 20ms. In a 0-180 for loop, convert the value in the range 0-180 to an

analog voltage value in the range of 25.6~128, and then output the corresponding PWM signal to turn the

servo from 0 degrees to 180 degrees.

 pin0.set_analog_period(20)

for i in range(180):

 pin0.write_analog(map(i,0,180,25.6,128))

 sleep(5)

In a 180-0 for loop, convert the value in the range 0-180 to the analog voltage value in the range of 25.6~128,

and then output the corresponding PWM signal to rotate the servo from 180 degrees to 0 degrees.

 for i in range(180,0,-1):

 pin0.write_analog(map(i,0,180,25.6,128))

 sleep(5)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 258 Chapter 22 Servo

█ support@freenove.com

Project 22.2 Knob

In this project, we will use a potentiometer to control the rotation angle of the Servo.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

Servo x1

Rotary potentiometer x1

F/M x6

http://www.freenove.com/
mailto:support@freenove.com

259 Chapter 22 Servo

█ www.freenove.com

support@freenove.com █

Circuit

The P0 pin of this circuit microbit reads the voltage of the potentiometer, and the P1 pin drives the servo.

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 260 Chapter 22 Servo

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/22.2_Knob Knob.hex

After importing successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, download the code into the micro:bit, rotate the

potentiometer, and the servo will follow the rotation.

Read the analog voltage value of the P0 pin, map the analog voltage value in the range of 0-1023 to the

angle of the servo in the range of 0-180, and then drive the servo to rotate the corresponding angle through

the P1 pin.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

261 Chapter 22 Servo

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/22.2_Knob Knob.py

After loading successfully, the code is shown as below:

Check the connection of the circuit and verify it correct, download the code into the micro:bit, rotate the

potentiometer, and the servo will follow the rotation.

The following is the program code:

1

2

3

4

5

6

7

from microbit import *

def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

while True:

 value=pin0.read_analog()

 pin1.set_analog_period(20)

 pin1.write_analog(map(value,0,1023,25.6,128))

Define map functions to convert values in one range to values in another range.

 def map(value,fromLow,fromHigh,toLow,toHigh):

 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow

Set the period of PWM signal to 20 ms. Read the analog voltage value of P0 foot, convert the analog voltage

value in the range of 0-1023 to the analog voltage value in the range of 25.6-128, and then output the

corresponding PWM signal to rotate the servo at the corresponding angle.

 value=pin0.read_analog()

pin1.set_analog_period(20)

pin1.write_analog(map(value,0,1023,25.6,128))

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 262 Chapter 23 Stepper Motor

█ support@freenove.com

Chapter 23 Stepper Motor

In this chapter, we will learn how to drive a Stepper Motor, and understand its working principle.

Project 23.1 Stepper Motor

In this project, we will use micro:bit to control a stepper motor.

Component list

Microbit x1

Extension board x1

USB cable x2

Jumper F/F x6

Stepper Motor x1

ULN2003 Stepper Motor Driver x1

http://www.freenove.com/
mailto:support@freenove.com

263 Chapter 23 Stepper Motor

█ www.freenove.com

support@freenove.com █

Component knowledge

Stepper Motor

Stepper Motors are an open-loop control device, which converts an electronic pulse signal into angular

displacement or linear displacement. In a non-overload condition, the speed of the motor and the location

of the stops depends only on the pulse signal frequency and number of pulses and is not affected by changes

in load as with a DC Motor.

A small Four-Phase Deceleration Stepper Motor is shown here:

The schematic diagram of a four-phase stepping motor is shown below:

The outside case or housing of the Stepper Motor is the Stator and inside the Stator is the Rotor. There are a

specific number of individual coils, usually an integer multiple of the number of phases the motor has, when

the Stator is powered ON, an electromagnetic field will be formed to attract a corresponding convex diagonal

groove or indentation in the Rotor’s surface. The Rotor is usually made of iron or a permanent magnet.

Therefore, the Stepper Motor can be driven by powering the coils on the Stator in an ordered sequence

(producing a series of “steps” or stepped movements).

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 264 Chapter 23 Stepper Motor

█ support@freenove.com

A common driving process is as follows:

In the sequence above, the Stepper Motor rotates once at a certain angle, which is called a “step”. By

controlling the number of rotational steps, you can then control the Stepper Motor’s rotation angle. By

defining the time between two steps, you can control the Stepper Motor’s rotation speed. When rotating

clockwise, the order of coil powered on is: A B C D A …… . And the rotor will rotate in accordance

with this order, step by step, called four-steps, four-part. If the coils is powered ON in the reverse order, D

C B A D … , the rotor will rotate in counter-clockwise direction.

There are other methods to control Stepper Motors, such as: connect A phase, then connect A B phase, the

stator will be located in the center of A B, which is called a half-step. This method can improve the stability

of the Stepper Motor and reduces noise. Tise sequence of powering the coils looks like this: A AB B

BCCCDD DAA ……, the rotor will rotate in accordance to this sequence ar, a half-step at a time,

called four-steps, eight-part. Conversely, if the coils are powered ON in the reverse order the Stepper

Motor will rotate in the opposite direction.

The stator in the Stepper Motor we have supplied has 32 magnetic poles. Therefore, to complete one full

revolution requires 32 full steps. The rotor (or output shaft) of the Stepper Motor is connected to a speed

reduction set of gears and the reduction ratio is 1:64. Therefore, the final output shaft (exiting the Stepper

Motor’s housing) requires 32 X 64 = 2048 steps to make one full revolution.

http://www.freenove.com/
mailto:support@freenove.com

265 Chapter 23 Stepper Motor

█ www.freenove.com

support@freenove.com █

ULN2003 Stepping motor driver

A ULN2003 Stepper Motor Driver is used to convert weak signals into more powerful control signals in order

to drive the Stepper Motor. In the illustration below, the input signal IN1-IN4 corresponds to the output

signal A-D, and 4 LEDs are integrated into the board to indicate the state of these signals. The PWR

interface can be used as a power supply for the Stepper Motor. By default, PWR and VCC are connected.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 266 Chapter 23 Stepper Motor

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

267 Chapter 23 Stepper Motor

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/23.1_StepperMotor StepperMotor.hex

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, and

then the stepper motor will rotate slowly.

In the code, the pins of P0, P1, P2 and P3 is set to high level in turn. When one pin is at a high level, set the

other three pins to low level. So the coil is energized as follows: A_B_C_D_A... A_B_C_D_A_C_D... to make the

stepper motor rotate.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

www.freenove.com █ 268 Chapter 23 Stepper Motor

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/23.1_StepperMotor StepperMotor.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, and the

stepper motor rotates slowly.

http://www.freenove.com/
mailto:support@freenove.com

269 Chapter 23 Stepper Motor

█ www.freenove.com

support@freenove.com █

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

from microbit import *

display.off()

Pin = [pin0, pin1, pin2, pin3]

while True:

 for i in Pin:

 for j in Pin:

 if i == j:

 j.write_digital(1)

 else:

 j.write_digital(0)

 sleep(10)

Close the LED dot matrix screen to allow the GPIO pins associated with the LED dot matrix screen to be reused

for other purposes. Define Pin list to store P0, P1, P2, P3 pin variables.

 display.off()

Pin = [pin0, pin1, pin2, pin3]

In the for loop, the pin order with output high level is P0, P1, P3 P0.... When one pin outputs high level, make

the other three pins output low levels. Make the coil electrified as follows: A_B_C_D_A_... to make stepper

motor rotate.

 for i in Pin:

 for j in Pin:

 if i == j:

 j.write_digital(1)

 else:

 j.write_digital(0)

 sleep(10)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 270 Chapter 24 Hygrothermograph

█ support@freenove.com

Chapter 24 Hygrothermograph

In this chapter, we will learn a commonly used sensor - Thermohygrometer DHT11.

Project 24.1 Hygrothermograph

In this project, we will use the micro:bit to read and print the temperature and humidity data of DHT11.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

DHT11 x1

Resistor 10kΩ x1

Jumper M/M x1 F/M x3

http://www.freenove.com/
mailto:support@freenove.com

271 Chapter 24 Hygrothermograph

█ www.freenove.com

support@freenove.com █

Component knowledge

The Temperature & Humidity Sensor DHT11 is a compound temperature & humidity sensor, and the output

digital signal has been calibrated by its manufacturer.

After being powered up, it will initialize in 1S's time. Its operating voltage is within the range of 3.3V-5.5V.

The SDA pin is a data pin, which is used to communicate with other devices.

The NC pin (Not Connected Pin) are a type of pin found on various integrated circuit packages. Those pins

have no functional purpose to the outside circuit (but may have an unknown functionality during

manufacture and test). Those pins should not be connected to any of the circuit connections.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 272 Chapter 24 Hygrothermograph

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

273 Chapter 24 Hygrothermograph

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/24.1_DHT11 DHT11.hex

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit and

open the serial port controller, you can see the temperature and humidity of the current environment, as

shown in the following figure:

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

www.freenove.com █ 274 Chapter 24 Hygrothermograph

█ support@freenove.com

Set sensor type to DHT11, data pin to P0, initialize DHT11 module, wait for 2 seconds

Every 1 s, the temperature and humidity data read will be printed out by serial port controller.

Reference

Block Function

Set sensor type DHT11 or DHT22, select data pin and

initialize DHT module.

Read humidity level (%) or temperature (Celsius).

http://www.freenove.com/
mailto:support@freenove.com

275 Chapter 24 Hygrothermograph

█ www.freenove.com

support@freenove.com █

Extensions

If you want to import the DHT Sensor Extension Block into your new project, follow these steps to add it.

Step 2, click“Extension”.

Step 1, click “Advanced”

to expand the list.

Enter "sensors" for search.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 276 Chapter 24 Hygrothermograph

█ support@freenove.com

Click to

add.

Completed

http://www.freenove.com/
mailto:support@freenove.com

277 Chapter 24 Hygrothermograph

█ www.freenove.com

support@freenove.com █

Python code

Import necessary Python file into micro:bit

In the code of this tutorial, the LCD1602 module and DHT11 module are used, so it is necessary to import

"I2C_LCD1602_Class.py" and "DHT11_RW.py" into the micro:bit. You can skip this section if you don’t use them.

When you need, you can come back to import them.

The import method is as follows:

Search on the C drive and find the "mu_code" folder.

Double click on "mu_code" to enter the folder.

Copy “I2C_LCD1602_Class.py” and “DHT11_RW.py” from following path into “mu_code” directory.

File type Path File name

Python file .. /Projects/PythonLibrary I2C_LCD1602_Class.py DHT11_RW.py

After pasting successfully, you can see them as below:

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 278 Chapter 24 Hygrothermograph

█ support@freenove.com

Open the Mu software, click "Files". Here we take "I2C_LCD1602_Class.py" as an example, drag

"I2C_LCD1602_Class.py" into micro:bit.

After importing successfully, you will see it on the left.

The import method of "DHT11_RW.py" is the same as described above. You just need to import the one you

need to use.

Note, after you upload other file into micro:bit, the original content will be covered. You need to import

it next time you use it.

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/24.1_DHT11 DHT11.py

After loading the code, as shown below. Before downloading the code, import the "DHT11_RW.py" file into

Select it and keep pressing with left mouse button, drag it to left box.

http://www.freenove.com/
mailto:support@freenove.com

279 Chapter 24 Hygrothermograph

█ www.freenove.com

support@freenove.com █

micro:bit first.(How to import?)

After importing the DHT11_RW.py file, check the connection of the circuit, verify it correct. And then download

the code into micro:bit, click "REPL", press the micro:bit reset button, you can see the temperature and

humidity of the current environment, as shown below:

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_python文件导入micro:bit方法

www.freenove.com █ 280 Chapter 24 Hygrothermograph

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

from microbit import *

from DHT11_RW import *

if __name__ == '__main__':

 sensor = DHT11(pin0)

 while True:

 try:

 temperature , humidity = sensor.read()

 print("temperature:"+str(temperature)+" C")

 print("humidity:"+str(humidity)+"%")

 except Exception as e:

 print("Error : " + str(e))

 time.sleep(1)

Export everything of DHT11_RW module, create object of DHT class, and set data pin to P0

 from DHT11_RW import *

sensor = DHT11(pin0)

Every 1 second, call the read() function in DHT11 class, get the temperature and humidity data, and print them

out separately.

 while True:

 try:

 temperature , humidity = sensor.read()

 print("temperature:"+str(temperature)+" C")

 print("humidity:"+str(humidity)+"%")

 except Exception as e:

 print("Error : " + str(e))

 time.sleep(1)

Reference

sensor.read()

The read() function is defined in DHT11 to obtain temperature and humidity data.

http://www.freenove.com/
mailto:support@freenove.com

281 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Chapter 25 Matrix Keypad

Earlier we learned about a single Push Button Switch. In this chapter, we will learn about Matrix Keyboards,

which integrates a number of Push Button Switches as Keys for the purposes of Input.

Project 25.1 Matrix Keypad

In this project, we will make LCD screen display number and character pressed on matrix keyboard.

Component list

Microbit x1

Extension board x1

I2C LCD1602 Module x1

USB cable x2

F/M x8 F/F x4

4x4 Matrix Keypad x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 282 Chapter 25 Matrix Keypad

█ support@freenove.com

Component knowledge

4x4 Matrix Keypad

A Keypad Matrix is a device that integrates a number of keys in one package. As is shown below, a 4x4 Keypad

Matrix integrates 16 keys (think of this as 16 Push Button Switches in one module):

Similar to the integration of an LED Matrix, the 4x4 Keypad Matrix has each row of keys connected with one

pin and this is the same for the columns. Such efficient connections reduce the number of processor ports

required. The internal circuit of the Keypad Matrix is shown below.

The method of usage is similar to the Matrix LED, by using a row or column scanning method to detect the

state of each key’s position by column and row. Take column scanning method as an example, send low level

to the first 1 column (Pin1), detect level state of row 5, 6, 7, 8 to judge whether the key A, B, C, D are pressed.

Then send low level to column 2, 3, 4 in turn to detect whether other keys are pressed. Therefore, you can get

the state of all of the keys.

http://www.freenove.com/
mailto:support@freenove.com

283 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 284 Chapter 25 Matrix Keypad

█ support@freenove.com

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/25.1_Keypad Keypad.hex

After importing successfully, the code is shown as below:

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

285 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

After checking the connection of the circuit and verifying it correct, the code is downloaded into micro:bit.

When the key of the matrix keyboard is pressed, the LCD will display the corresponding numbers or characters.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 286 Chapter 25 Matrix Keypad

█ support@freenove.com

Close the LED dot matrix screen, initialize the LCD, and store the values of the matrix keyboard 1, 2, 3, 4, 5,

6, 7, 8, 9, 0, A, B, C, D, #, *, in the array group variable.

There is no actual

content in these

two blocks.

http://www.freenove.com/
mailto:support@freenove.com

287 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Row scanning. Pins P9, P6, P10, P4 corresponds to the first, second, third and fourth rows. Make the pins

output high level in turn, the other pins output low level.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 288 Chapter 25 Matrix Keypad

█ support@freenove.com

Column scanning. Pins P3, P2, P1, P0 corresponds to the first, second, third and fourth columns. Reading

high level means the key of current line and column is pressed. And the corresponding number or character

in the group array will be displayed on the LCD.

http://www.freenove.com/
mailto:support@freenove.com

289 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/25.1_Keypad Keypad.py

After the code is loaded, as shown below, import the “I2C_LCD1602_Class.py” file to micro:bit before

downloading the code. (How to import?)

After importing the I2C_LCD1602_Class.py file, check the connection of the circuit and verify it correct, and

then download the code into micro:bit, and press the key of the matrix keyboard, LCD will display the

corresponding number or character.

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

from microbit import *

from I2C_LCD1602_Class import *

display.off()

group=[["1", "2", "3", "A"], ["4", "5", "6", "B"], ["7", "8", "9", "C"], ["*", "0", "#", "D"]]

Pin_row = [pin9, pin6, pin10, pin4]

Pin_column = [pin3, pin2, pin1, pin0]

lcd = I2C_LCD1602(0x27)

lcd.clear()

for i in range(4):

 Pin_row[i].write_digital(0)

for i in range(4):

 Pin_column[i].write_digital(0)

while True:

 for i in range(4):

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_python文件导入micro:bit方法

www.freenove.com █ 290 Chapter 25 Matrix Keypad

█ support@freenove.com

15

16

17

18

19

 Pin_row[i].write_digital(1)

 for j in range(4):

 if Pin_column[j].read_digital()==1:

 lcd.puts(group[i][j], 0, 0)

 Pin_row[i].write_digital(0)

Close the LED dot matrix screen, store the values of matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C, D,, *, in

the array group. Store the pin variables of the control keyboard row to Pin_row, and store the pin variables

of the control keyboard column to Pin_column. Create the I2C_LCD1602 object lcd, enter the I2C address

and clear the screen. Set the pins connecting the matrix keyboard to low level.

 display.off()

group=[["1", "2", "3", "A"], ["4", "5", "6", "B"], ["7", "8", "9", "C"], ["*", "0", "#", "D"]]

Pin_row = [pin9, pin6, pin10, pin4]

Pin_column = [pin3, pin2, pin1, pin0]

lcd = I2C_LCD1602(0x27)

lcd.clear()

for i in range(4):

 Pin_row[i].write_digital(0)

for i in range(4):

 Pin_column[i].write_digital(0)

Scan rows and columns. If the key in certain row and column is pressed, the corresponding number or

character in the group array will be displayed on the LCD.

 while True:

 for i in range(4):

 Pin_row[i].write_digital(1)

 for j in range(4):

 if Pin_column[j].read_digital()==1:

 lcd.puts(group[i][j], 0, 0)

 Pin_row[i].write_digital(0)

http://www.freenove.com/
mailto:support@freenove.com

291 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Project 25.2 Countdown Timer

This project makes a countdown timer.

Component list

It is same as the previous project.

Circuit

It is same as the previous project.

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/25.2_CountdownTimer CountdownTimer.hex

After importing successfully, the code is shown as below:

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

www.freenove.com █ 292 Chapter 25 Matrix Keypad

█ support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

293 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, type in

the value, press the'#'key, start countdown, the key '*' is reset.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 294 Chapter 25 Matrix Keypad

█ support@freenove.com

Close the LED dot matrix screen, initialize the LCD and store the values of matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8,

9 in the array group.

Row scanning. Pins P9, P6, P10, P4 corresponds to the first, second, third and fourth rows. Make the pins

output high level in turn, the other pins output low level.

http://www.freenove.com/
mailto:support@freenove.com

295 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Column scanning. Pins P3, P2, P1 corresponds to the first, second and third columns. When reading high level,

the corresponding reaction will be executed.

Determine whether the first column on the left is pressed, and then determine which row of the column is

pressed. If the "*" key of the fourth row and first column is pressed, clear the LCD screen content, and the

Number1 variable is assigned 0; if the other keys 1, 4 or 7 is pressed, the Number1 variable is multiplied by

10 and the corresponding key value is added, and then reassigned to Number1 to achieve carry effect.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 296 Chapter 25 Matrix Keypad

█ support@freenove.com

Determine whether the second column on the left is pressed, and then determine which row of the column is

pressed. If the "0" key of the fourth row and second column is pressed, the value of Number1 is multiplied by

10, and then reassigned to Number1 variable. If the other keys 2, 5 or 8 is pressed, the value of Number1 is

multiplied by 10 and the corresponding key value is added, and then reassigned to Number1 to achieve carry

effect.

Determine whether the third column on the left is pressed, and then determine which row of the column is

pressed. If the "#" key of the fourth row and the third column is pressed, the countdown is performed by the

while loop. If the other keys 3, 6, 9 is pressed, the value of Number1 will be multiplied by 10 and the

corresponding key value is reassigned to the Number1 variable to achieve carry effect. The Number1 variable

will decrease by 1 every 1s. During the cycle, if the "*" key is pressed or the value of Number1 variable is less

than or equal to 0, the loop will jumper out.

http://www.freenove.com/
mailto:support@freenove.com

297 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/25.2_CountdownTimer CountdownTimer.py

After the code is loaded, as shown below, import the “I2C_LCD1602_Class.py” file to micro:bit before

downloading the code.(How to import?)

After importing the I2C_LCD1602_Class.py file, check the connection of the circuit and verify it correct, and

download the code into micro:bit, type in the value, press the '#' key, start countdown, the key'*' is reset.

The following is the program code:

1

2

from microbit import *

from I2C_LCD1602_Class import *

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_python文件导入micro:bit方法

www.freenove.com █ 298 Chapter 25 Matrix Keypad

█ support@freenove.com

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

display.off()

group=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Pin_row = [pin9, pin6, pin10, pin4]

Pin_column = [pin3, pin2, pin1, pin0]

lcd = I2C_LCD1602(0x27)

lcd.clear()

number=0

for i in range(4):

 Pin_row[i].write_digital(0)

for i in range(4):

 Pin_column[i].write_digital(0)

while True:

 for i in range(4):

 Pin_row[i].write_digital(1)

 for j in range(3):

 if Pin_column[j].read_digital()==1:

 sleep(100)

 if Pin_column[j].read_digital()==1:

 if i==3 and j==0: #Press the "*" button

 number=0

 lcd.clear()

 elif i==3 and j==1: #Press the "0" button

 number=number*10

 elif i==3 and j==2: #Press the "#" button

 while True:

lcd.clear()

 lcd.puts(str(number), 0, 0)

 number-=1

 sleep(1000)

 if pin3.read_digital()==1 or number==0:

 number=0

 lcd.clear()

 break

 else: #Press the number button

 number=number*10+group[i][j]

 lcd.puts(str(number), 0, 0)

 Pin_row[i].write_digital(0)

Close the LED dot matrix screen, store the values of matrix keyboard 1, 2, 3, 4, 5, 6, 7, 8, 9 in the array group,

store the pin variables of the control keyboard row in Pin_row, and store the pin variables of the control

keyboard column in Pin_column. Create the object lcd of class I2C_LCD1602, enter the I2C address and clear

the screen, and set the pins connecting the matrix keyboard to low level.

 display.off()

group=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

http://www.freenove.com/
mailto:support@freenove.com

299 Chapter 25 Matrix Keypad

█ www.freenove.com

support@freenove.com █

Pin_row = [pin9, pin6, pin10, pin4]

Pin_column = [pin3, pin2, pin1, pin0]

lcd = I2C_LCD1602(0x27)

lcd.clear()

number=0

for i in range(4):

 Pin_row[i].write_digital(0)

for i in range(4):

 Pin_column[i].write_digital(0)

Scan the rows and columns to check if the key is pressed.

If the "*" key is pressed, the number variable is assigned 0

If the "#" key is pressed, then the content of the while loop is executed. Number variable decreases by 1 every

1s to achieve the countdown effect. During the period, if the "*" key is pressed or the value of number variable

is 0, the while loop jumper out and the number variable is assigned with 0.

If the number key is pressed, the number variable is multiplied by 10 and add the corresponding key value,

then reassigned to the number variable.

 while True:

 for i in range(4):

 Pin_row[i].write_digital(1)

 for j in range(3):

 if Pin_column[j].read_digital()==1:

 sleep(100)

 if Pin_column[j].read_digital()==1:

 if i==3 and j==0: #Press the "*" button

 number=0

 lcd.clear()

 elif i==3 and j==1: #Press the "0" button

 number=number*10

 elif i==3 and j==2: #Press the "#" button

 while True:

lcd.clear()

 lcd.puts(str(number), 0, 0)

 number-=1

 sleep(1000)

 if pin3.read_digital()==1 or number==0:

 number=0

 lcd.clear()

 break

 else: #Press the number button

 number=number*10+group[i][j]

 lcd.puts(str(number), 0, 0)

 Pin_row[i].write_digital(0)

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 300 Chapter 26 Infrared Motion Sensor

█ support@freenove.com

Chapter 26 Infrared Motion Sensor

In this chapter, we will learn a widely used sensor, Infrared Motion Sensor.

Project 26.1 Sense Light

In this project, we will make a Motion Detector, with the human body infrared pyroelectric sensors.

When someone is in close proximity to the Motion Detector, it will automatically light up and when there is

no one close by, it will be out.

This Infrared Motion Sensor can detect the infrared spectrum (heat signatures) emitted by living humans and

animals.

Component list

Microbit x1

Extension board x1

Breadboard x1

USB cable x2

HC-SR501 x1

LED x1

Resistor 220Ω x1

F/M x3 F/F x2

http://www.freenove.com/
mailto:support@freenove.com

301 Chapter 26 Infrared Motion Sensor

█ www.freenove.com

support@freenove.com █

Component knowledge

The following is the diagram of infrared Motion sensor(HC SR-501):

Top

Bottom

Schematic

Description:

1. Working voltage: 5v-20v(DC） Static current: 65uA.

2. Automatic Trigger. When a living body enters into the active area of sensor, the module will output high

level (3.3V). When the body leaves the sensor’s active detection area, it will output high level lasting for

time period T, then output low level(0V). Delay time T can be adjusted by the potentiometer R1.

3. According to the position of Fresnel lenses dome, you can choose non-repeatable trigger modes or

repeatable modes.

L: non-repeatable trigger mode. The module output high level after sensing a body, then when the delay

time is over, the module will output low level. During high level time, the sensor no longer actively senses

bodies.

H: repeatable trigger mode. The distinction from the L mode is that it can sense a body until that body

leaves during the period of high level output. After this, it starts to time and output low level after delaying

T time.

4. Induction block time: the induction will stay in block condition and does not induce external signal at

lesser time intervals (less than delay time) after outputting high level or low level

5. Initialization time: the module needs about 1 minute to initialize after being powered ON. During this

period, it will alternately output high or low level.

6. One characteristic of this sensor is when a body moves close to or moves away from the sensor’s dome

edge, the sensor will work at high sensitively. When a body moves close to or moves away from the

sensor’s dome in a vertical direction (perpendicular to the dome), the sensor cannot detect well (please

take note of this deficiency). Actually this makes sense when you consider that this sensor is usually placed

on a celling as part of a security product. Note: The Sensing Range (distance before a body is detected)

is adjusted by the potentiometer.

We can regard this sensor as a simple inductive switch when in use.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 302 Chapter 26 Infrared Motion Sensor

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

303 Chapter 26 Infrared Motion Sensor

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/26.1_SenseLight SenseLight.hex

After import successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, then

HC-SR501 module is initialized for about one minute. After initialization, when someone is moving in its

detection range, the LED will light up; otherwise it will not respond. Two potentiometers can adjust the

detection distance and Induction block time.

If human movement is detected, the module will output high level. If not, the module will always output low

level. The level read from P0 pin is written to the P1 pin, so that the level of P0 and P1 pin will be consistent

to control the LED.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

www.freenove.com █ 304 Chapter 26 Infrared Motion Sensor

█ support@freenove.com

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/26.1_SenseLight SenseLight.py

After loading successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit, then

HC-SR501 module is initialized for about one minute. After initialization, when someone is moving in its

detection range, the LED will light up; Otherwise it will not respond. Two potentiometers can adjust the

detection distance and Induction block time.

The following is the program code:

1

2

3

4

5

6

from microbit import *

while True:

 if pin0.read_digital()==1:

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

If human movement is detected, the module will output high level. If not, the module will always output low

level. According to the read level of the P1 pin, the P0 pin also outputs the same level to control the LED.

 if pin0.read_digital()==1:

 pin1.write_digital(1)

 else:

 pin1.write_digital(0)

http://www.freenove.com/
mailto:support@freenove.com

305 Chapter 27 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Chapter 27 Ultrasonic Ranging

In this chapter, we learn a module which use ultrasonic to measure distance, HC SR04.

Project 27.1 Ultrasonic Ranging

In this project, we use HC-SR04 ultrasonic module to measure the distance between the module and the

obstacle in front of it and display it on LCD screen.

Component list

Microbit x1

Extension board x1

I2C LCD1602 Module x1

USB cable x2

F/F x8

HC-SR04 x1

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 306 Chapter 27 Ultrasonic Ranging

█ support@freenove.com

Component Knowledge

The Ultrasonic Ranging Module uses the principle that ultrasonic waves will reflect when they encounter any

obstacles. This is possible by counting the time interval between when the ultrasonic wave is transmitted to

when the ultrasonic wave reflects back after encountering an obstacle. Time interval counting will end after

an ultrasonic wave is received, and the time difference (delta) is the total time of the ultrasonic wave’s journey

from being transmitted to being received. Because the speed of sound in air is a constant, and is about

v=340m/s, we can calculate the distance between the Ultrasonic Ranging Module and the obstacle: s=vt/2.

The HC-SR04 Ultrasonic Ranging Module integrates a both an ultrasonic transmitter and a receiver. The

transmitter is used to convert electrical signals (electrical energy) into high frequency (beyond human hearing)

sound waves (mechanical energy) and the function of the receiver is opposite of this. The picture and the

diagram of the HC SR04 Ultrasonic Ranging Module are shown below:

http://www.freenove.com/
mailto:support@freenove.com

307 Chapter 27 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Pin description:

VCC power supply pin

Trig trigger pin

Echo Echo pin

GND GND

Technical specs:

Working voltage: 5V Working current: 12mA

Minimum measured distance: 2cm Maximum measured distance: 200cm

Instructions for Use: output a high-level pulse in Trig pin lasting for least 10uS, the module begins to

transmit ultrasonic waves. At the same time, the Echo pin is pulled up. When the module receives the

returned ultrasonic waves from encountering an obstacle, the Echo pin will be pulled down. The duration of

high level in the Echo pin is the total time of the ultrasonic wave from transmitting to receiving, s=vt/2. This

is done constantly.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 308 Chapter 27 Ultrasonic Ranging

█ support@freenove.com

Circuit

Schematic diagram

Hardware connection

http://www.freenove.com/
mailto:support@freenove.com

309 Chapter 27 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Block code

Open MakeCode first. Import the .hex file. The path is as below:

(How to import project)

File type Path File name

HEX file ../Projects/BlockCode/27.1_UltrasonicRanging UltrasonicRanging.hex

After importing successfully, the code is shown as below:

After checking the connection of the circuit and verifying it correct, download the code into micro:bit. The

LCD screen will show the distance between the obstacle and the ultrasonic module in CM.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_Import_Code

www.freenove.com █ 310 Chapter 27 Ultrasonic Ranging

█ support@freenove.com

Initialize LCD.

The distance of obstacles measured by the ultrasonic module will be assigned to the variable distance, and

then displayed on LCD. LCD refreshes every 1 second.

Reference

Block Function

It can return the distance of obstacles detected by

sensor.

http://www.freenove.com/
mailto:support@freenove.com

311 Chapter 27 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Extensions

If you want to import the ultrasonic module expansion block into the new project, follow the steps below to

add it.

Step 2 click “Extension”.

Step 1 click “Advanced”

to expand the list.

Type “sensors” for search.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 312 Chapter 27 Ultrasonic Ranging

█ support@freenove.com

Click to add.

Completed.

http://www.freenove.com/
mailto:support@freenove.com

313 Chapter 27 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

Python code

Open the .py file with Mu. Code, the path is as below:

File type Path File name

Python file ../Projects/PythonCode/27.1_UltrasonicRanging UltrasonicRanging.py

After the code is loaded, as shown below, import the "I2C_LCD1602_Class.py" file to micro:bit before

downloading the code. (How to import?)

After importing the I2C_LCD1602_Class.py file, check the connection of the circuit and verify it correct. After

downloading the code into micro:bit, you can see that the LCD screen will show the distance between the

obstacle and the ultrasonic module. The unit is CM.

http://www.freenove.com/
mailto:support@freenove.com
file:///C:/Users/陈龙/Desktop/英Chapter%2020-27%20LCD1602%20(2).docx%23_python文件导入micro:bit方法

www.freenove.com █ 314 Chapter 27 Ultrasonic Ranging

█ support@freenove.com

The following is the program code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

from microbit import *

from I2C_LCD1602_Class import *

from time import sleep_us,ticks_us

def getdistance():

 distance=0

 pin1.write_digital(1)

 sleep_us(15)

 pin1.write_digital(0)

 while pin0.read_digital() == 0:

 pass

 if pin0.read_digital() == 1:

 ts = ticks_us()

 while pin0.read_digital() == 1:

 pass

 te = ticks_us()

 tc = te - ts

 print(te,ts)

 distance = (tc*170)*0.0001

 return distance

lcd = I2C_LCD1602(0x27)

while True:

 distance=round(getdistance())

 lcd.clear()

 lcd.puts("Distance is:",0,0)

 lcd.puts(str(distance),12,0)

 sleep(1000)

http://www.freenove.com/
mailto:support@freenove.com

315 Chapter 27 Ultrasonic Ranging

█ www.freenove.com

support@freenove.com █

The custom getdistance() function is used to get the distance between the obstacle and the ultrasonic module.

The unit of return value is CM.

 def getdistance():

 distance=0

 pin1.write_digital(1)

 sleep_us(15)

 pin1.write_digital(0)

 while pin0.read_digital() == 0:

 pass

 if pin0.read_digital() == 1:

 ts = ticks_us()

 while pin0.read_digital() == 1:

 pass

 te = ticks_us()

 tc = te - ts

 print(te,ts)

 distance = (tc*170)*0.0001

 return distance

Create the object lcd of I2C_LCD1602 class, input I2C address 0x27, call getdistance() function, get the

distance of the obstacle to the ultrasonic module, assign it to the distance variable, and then display the

value of the distance variable on the LCD.

 lcd = I2C_LCD1602(0x27)

while True:

 distance=round(getdistance())

 lcd.clear()

 lcd.puts("Distance is:",0,0)

 lcd.puts(str(distance),12,0)

 sleep(1000)

Reference

getdistance()

Get the distance from the ultrasonic module to the obstacle. The unit is CM.

http://www.freenove.com/
mailto:support@freenove.com

www.freenove.com █ 316 What's Next?

█ support@freenove.com

What's Next?

THANK YOU for participating in this learning experience!

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or

questions about the Tutorial or component contents of this Kit, please feel free to contact us:

support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a

revised version.

If you want to learn more about micro:bit, we have a smart Car named Micro:bit Rover. You can visit our

website to purchase. http://www.freenove.com/store.html

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products

in science and technology, please continue to visit our website. We will continue to launch fun, cost-effective,

innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.

http://www.freenove.com/
mailto:support@freenove.com

	Welcome
	Contents
	Preface
	Micro:bit
	Meet micro:bit
	Features
	Hardware
	GPIO

	Micro:bit GPIO Extension Board
	Hardware and Feature
	How to use?

	Code & Programming
	Quick Start
	Step 1: Connecting Micro:bit
	Step 2: Write Program
	Step 3: Flashing Code to your Micro:bit
	Step 4: Run the Program
	Warning

	MakeCode
	Quick Download
	Pair device

	Import Code
	Python
	Mu
	Import necessary Python file into micro:bit

	Chapter 1 LED matrix
	Project 1.1 Heartbeat
	Component List
	Circuit
	Block code
	Reference

	Python Code
	Reference

	Project 1.2 Displaying Number
	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 1.3 Displaying Text
	Circuit
	Block code
	Reference

	Python code

	Project 1.4 Displaying Custom
	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 2 Built-in Button
	Project 2.1 Button A and B
	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 3 LED
	Project 3.1 Blink
	Component List
	Circuit Knowledge
	Current
	Resistor

	Component knowledge
	Jumper
	Breadboard
	LED

	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 4 Button and LED
	Project 4.1 Control LED by Button
	Component list
	Circuit knowledge
	Connection of Push Button Switch

	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 4.2 Table Lamp
	Component list
	Circuit knowledge
	Debounce for Push Button

	Circuit
	Block code
	Reference

	Python code

	Chapter 5 LED Bar Graph
	Project 5.1 Flowing Light
	Component list
	Component knowledge
	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 6 PWM
	Project 6.1 Breathing Light
	Component list
	Circuit knowledge
	PWM

	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 7 RGBLED
	Project 7.1 Monochromatic Light
	Component list
	Component knowledge
	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 7.2 Multicolored Light
	Component list
	HSL color
	Circuit
	Block code
	Reference
	Extensions

	Python code
	Reference

	Chapter 8 Neopixel
	Project 8.1 Rainbow Water Light
	Component list
	Component knowledge
	Freenove 8 RGB LED Module

	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 9 Buzzer
	Component knowledge
	Transistor
	Buzzer

	Project 9.1 Active Buzzer
	Component list
	Circuit
	Block code
	Python code

	Project 9.2 Happy Birthday Melody
	Component list
	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 9.3 Custom Melody
	Component list
	Circuit
	Block code
	Python code

	Chapter 10 Serial Communication
	Project 10.1 Display the Data
	Component list
	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 11 Magnetometer
	Project 11.1 Display Magnetometer Data
	Component list
	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 11.2 Electronic Compass
	Component list
	Circuit
	Block code
	Reference

	Python code

	Chapter 12 Accelerometer
	Project 12.1 Display Accelerometer Data
	Component list
	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 12.2 Gradiometer
	Component list
	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 13 Potentiometer
	Project 13.1 Potentiometer
	Component list
	Component knowledge
	Potentiometer
	Rotary potentiometer

	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 14 Potentiometer and LED
	Project 14.1 Soft Light
	Component list
	Circuit
	Block code
	Python code

	Project 14.2 Multicolored Soft Light
	Component list
	Circuit
	Block code
	Python code

	Project 14.3 Rainbow Light
	Component list
	Circuit
	Block code
	Python code

	Chapter 15 Light Sensor
	Project 15.1 Built-in Light Sensor
	Component list
	Component knowledge
	Light sensor

	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 15.2 Night Light
	Component list
	Component knowledge
	Circuit
	Block code
	Python code

	Chapter 16 Temperature Sensor
	Project 16.1 Built-in Temperature Sensor
	Component list
	Circuit
	Block code
	Reference

	Python code
	Reference

	Project 16.2 Thermistor
	Component list
	Component knowledge
	Circuit
	Block code
	Reference
	Extensions

	Python code

	Chapter 17 Joystick
	Project 17.1 Displaying Joystick Data
	Component list
	Component knowledge
	Circuit
	Block code
	Python code

	Project 17.2 Showing Direction
	Component list
	Circuit
	Block code
	Python code

	Chapter 18 74HC595 and LED Bar Graph
	Project 18.1 Flowing Water Light
	Component list
	Component knowledge
	Circuit
	Block code
	Reference

	python code
	Reference

	Chapter 19 74HC595 and 7-segment display
	Project 19.1 7-segment display
	Component list
	Component knowledge
	Circuit
	Block code
	Reference

	Python code

	Chapter 20 LCD1602
	Project 20.1 I2C LCD1602
	Component list
	Component knowledge
	Circuit
	Block code
	Reference
	Extensions

	Python code
	Import necessary Python file into micro:bit
	Reference

	Chapter 21 Motor
	Project 21.1 Relay & Motor
	Component list
	Component knowledge
	Circuit
	Block code
	Python code

	Project 21.2 Potentiometer & Motor
	Component list
	Component knowledge
	Circuit
	Block code
	Reference

	Python code
	Reference

	Chapter 22 Servo
	Project 22.1 Sweep
	Component list
	Component knowledge
	Circuit
	Block code
	Reference

	python code

	Project 22.2 Knob
	Component list
	Circuit
	Block code
	Python code

	Chapter 23 Stepper Motor
	Project 23.1 Stepper Motor
	Component list
	Component knowledge
	Stepper Motor
	ULN2003 Stepping motor driver

	Circuit
	Block code
	Python code

	Chapter 24 Hygrothermograph
	Project 24.1 Hygrothermograph
	Component list
	Component knowledge
	Circuit
	Block code
	Reference
	Extensions

	Python code
	Import necessary Python file into micro:bit
	Reference

	Chapter 25 Matrix Keypad
	Project 25.1 Matrix Keypad
	Component list
	Component knowledge
	4x4 Matrix Keypad

	Circuit
	Block code
	Python code

	Project 25.2 Countdown Timer
	Component list
	Circuit
	Block code
	Python code

	Chapter 26 Infrared Motion Sensor
	Project 26.1 Sense Light
	Component list
	Component knowledge
	Circuit
	Block code
	Python code

	Chapter 27 Ultrasonic Ranging
	Project 27.1 Ultrasonic Ranging
	Component list
	Component Knowledge
	Circuit
	Block code
	Reference
	Extensions

	Python code
	Reference

	What's Next?

